图书介绍
企业数量分析 教程与案例 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![企业数量分析 教程与案例 英文版](https://www.shukui.net/cover/73/34240110.jpg)
- (美)塞缪尔·E.博迪利(Samuel E.Bodily)等著 著
- 出版社: 沈阳市:东北财经大学出版社;McGraw-Hill出版公司
- ISBN:7810444700
- 出版时间:1998
- 标注页数:649页
- 文件大小:42MB
- 文件页数:669页
- 主题词:
PDF下载
下载说明
企业数量分析 教程与案例 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Proactive Decision Making1
Routine Decisions2
The Challenges of Proactive Decision Making3
Alternatives3
Assumptions—Structure4
Assumptions—Assessments5
Performance6
Summary7
Chapter 2 Alternatives9
Small Number of Alternatives9
Sequential Decisions11
A Single Decision Quantity12
Two or More Decision Quantities17
Decision Rules17
Summary18
Chapter 3 Structuring Assumptions in Decision Making19
Structuring Relationships Using an Influence Diagram20
Structuring a Sequence of Decisions and Uncertainties Using a Decision Tree26
Influence Diagrams with Uncertain Quantities31
Final Examples of How to Develop an Influence Diagram34
The Use of Influence Diagrams and Decision Trees37
Case:Destiny Consulting Group39
Chapter 4 Assessment42
Sensitivity Analysis43
The Language of Probability48
Uncertainties with a Few Potential Outcomes48
Uncertainties with Many Potential Outcomes51
Summary Measures of Probability Distributions52
Deriving the Probability Distribution for Performance55
Summary56
Relevant Monetary Flows59
Chapter 5 Performance59
Evaluating Alternatives under Uncertainty62
Few Potential Outcomes62
Many Potential Outcomes67
Summary74
Chapter 6 Risk Management76
Value of Information76
Perfect Information77
Imperfect Information79
Value of Control81
Perfect Control82
Control of Continuously Ranging Quantities82
Adding Value and Reducing Risk83
Summary86
Chapter 7 Evaluating Multiperiod Performance87
Cash Flow88
An Example89
Time Value of Money91
Accumulated Value92
Present Value and Net Present Value94
Formulas for Accumulated and Present Value Calculations97
Streams in Perpetuity97
Pretax versus Aftertax Analyses98
The Reinvestment Rate98
Hurdle Rate99
Internal Rate of Return99
Nominal versus Effective Rates of Return101
Chapter 8 Multiobjective and Multistakeholder Choice103
The Generic Choice Problem103
Example104
First-Round Eliminations105
Dominance105
Decision Rules without Tradeoff Judgments107
Satisficing108
The Lexicographic Rule108
Rate and Weight:Linear Additive Scoring Rules109
Rating Alternatives109
Weighting Attributes110
Assumptions of Rate and Weight115
Multiple Stakeholder Problems116
Appendix 1 Comments on the Dependence of Weights on the Scaling of Attributes116
Exercises119
Chapter 9 Risk Preference and Utility120
The Utility of Monetary Consequences120
Risk Aversion123
Constant Risk Aversion:Negative Exponential Utility124
Decreasing Risk Aversion:Logarithmic Utility126
Using a Utility Curve for Risk Analysis129
Separation of Risk-Return and Mean-Variance Analysis131
Corporate Risk Policy132
Exercises133
Chapter 10 Competitor Analysis134
Characterizing Competitive Situations135
Matrix Format137
Classical Structures141
No(or Little) Conflict141
Prisoner s Dilemma142
Preemption144
Summary145
Chapter 11 Probability Distributions147
The Language of Probability Distributions147
The Probability Mass Function148
The Cumulative Distribution Function149
Continuous and Many-Valued Uncertain Quantities152
Assessment:Capturing Personal Judgment156
An Example of Assessing a Probability Distribution159
Assessment:Using Historical Data as a Guide160
Identifying Suitable Data161
Using the Suitable Data as a Guide162
Adjusting Data for One Distinguishing Factor167
Assessment:Appealing to Underlying Structure168
The Binomial Distribution169
The Normal Distribution172
The Poisson Distribution177
The Exponential Distribution178
Subjective Biases and Assessment180
Summary182
Chapter 12 Sampling183
Forecasting Sample Results184
Forecasting a Sample Average186
Forecasting a Sample Proportion188
Using Sample Results to Draw Inferences about the Underlying Probability Distribution191
Inferences about the Mean of the Underlying Probability Distribution192
Inferences about the Underlying Probability194
Using Sample Results to Forecast Future Sample Results195
Using Sample Results to Forecast a Future Sample Average196
Using Sample Results to Forecast a Future Sample Proportion197
Summary198
Chapter 13 Time-Series Forecasting199
Basic Approaches for One-Period Forecasts200
Simple Approaches200
Moving Average201
Smoothed Average202
Comparison of Forecasts203
Precision204
Bias205
Exploiting Multiperiod Patterns207
Treating Seasonality208
Deseasonalizing a Time Series208
Forecasting the Deseasonalized Series211
Decomposition of Time Series into Seasonality and Trend Components213
Reseasonalizing the Forecast213
Generating the Probability Distribution Forecast213
Separating out Seasonality214
Extrapolating Trend and Cycle Components215
Holt s Model:Exponential Smoothing with Trend217
Winter s Model:Exponential Smoothing with Trend and Seasonality220
Other Advanced Techniques221
Considerations in Preparing and Using a Forecast222
Chapter 14 Regression:Forecasting Using Explanatory Factors224
The Simple Linear Model224
Fitting the Model Using “Least Squares”227
Important Properties of the Least-Squares Regression Line229
Summary Regression Statistics230
Standard Error of Estimate232
Adjusted R Square233
Standard Error of the Coefficients235
Assumptions behind the Linear Regression Model236
Linearity237
Independence239
Homoscedasticity241
Normality242
Summary of Regression Assumptions243
Model-Building Philosophy244
Uses of the Linear Model245
Nature of the Relationship among Variables246
The Importance of the Underlying Relationship to the Use of the Model247
Model-Building Procedure249
Common Mistakes253
Summary254
Forecasting Using the Linear Regression Model255
Point Forecast255
Interval Forecast255
Analogy to Simple Random Sampling257
Using Dummy Variables to Represent Categorical Variables259
Example259
Dummy Variables for More than Two Groups261
Useful Data Transformations262
Example263
Choosing a Transformation267
Transforming the Y-Variable270
Chapter 15 Discrete-Event Simulation273
An Example Application of Discrete-Event Simulation274
The Model275
Important Issues in Discrete-Event Simulation283
Calibrating the Uncertainties283
Validating the Model284
Avoiding Peculiarities Associated with Start-up285
Terminating the Model Run285
Summary286
Chapter 16 Introduction to Optimization Models287
Transforming an Evaluation Model into an Optimization Model288
Example 1:Optimal Order Quantity288
Example 2:Product Mix Planning299
Example 3:Facility Location301
Summary of Examples307
Categorizing and Solving Optimization Models308
Example 1:Nonlinear Programming308
Example 2:Linear Programming312
Example 3:Integer Programming314
Uncertainty in Optimization Models:Sensitivity Analysis319
Lagrange Multipliers319
Linear Programming Models322
Building an Optimization Model from Scratch326
Chapter 17 The Mathematics of Optimization332
Functions333
Algebraic Framework for Optimization Models333
General Structure of an Optimization Model335
Integer Programming337
Linear Programming (LP)337
Graphical Representation of Example 2338
The Simplex Algorithm341
Some Final Comments on the Simplex Algorithm and LP344
Karmarkar s Algorithm:An Alternative Approach to Solving LP Models345
Nonlinear Programming (NLP)346
Levers to Control the GS Solution Approach349
Integer Programming (IP)352
Final Observations:LP,NLP,and IP358
Summary360
Cases361
Case 1:American Lawbook Corporation(A)361
Case 2:American Lawbook Corporation(B)372
Case 3:Amore Frozen Foods375
Case 4:Athens Glass Works381
Case 5:Buckeye Power Light Company384
Case 6:Buckeye Power Light Company Supplement389
Case 7:California Oil Company397
Case 8:C.K.Coolidge,Inc.(A)401
Case 9:The Commerce Tavern413
Case 10:CyberLab:A New Business Opportunity for PRICO(A)420
Case 11:CyberLab:Supplement428
Case 12:CyberLab:A New Business Opportunity for PRICO(B)430
Case 13:Dhahran Roads(A)432
Case 14:Dhahran Roads(B)434
Case 15:Discounted Cash Flow Exercises436
Case 16:Edgcomb Metals(A)438
Case 17:Florida Glass Company(A)447
Case 18:Florida Glass Company(A)Supplement454
Case 19:Foulke Consumer Products,Inc.457
Case 20:Foulke Consumer Products,Inc.,Supplement463
Case 21:Freemark Abbey Winery475
Case 22:Galaxy Micro Systems478
Case 23:Galaxy Micro Systems Supplement480
Case 24:George s T-Shirts481
Case 25:Harimann International483
Case 26:Hightower Department Stores:Imported Stuffed Animals490
Case 27:International Guidance and Controls499
Case 28:Jade Shampoo(A)501
Case 29:Jade Shampoo(B)506
Case 30:Jaikumar Textiles,Ltd.;The Nylon Division(A)509
Case 31:Jaikumar Textiles,Ltd.;The Nylon Division(B)513
Case 32:Lesser Antilles Lines:The Island of San Huberto515
Case 33:Lightweight Aluminum Company:The Lebanon Plant524
Case 34:Lorex Pharmaceuticals536
Case 35:Maxco,Inc.,and the Gambit Company539
Case 36:The Oakland A s(A)546
Case 37:The Oakland A s(A)Supplement555
Case 38:The Oakland A s(B)563
Case 39:Piedmont Airlines:Discount Seat Allocation(A)566
Case 40:Piedmont Airlines:Discount Seat Allocation(B)574
Case 41:Probability Assessment Exercise579
Case 42:Problems in Regression581
Case 43:Roadway Construction Company585
Case 44:Shumway,Horch,and Sager(A)588
Case 45:Shumway,Horch,and Sager(B)591
Case 46:Sleepmore Mattress Manufacturing:Plant Consolidation595
Case 47:Sprigg Lane(A)600
Case 48:T.Rowe Price Associates611
Case 49:Wachovia Bank and Trust Company,N.A.(B)619
Case 50:Wachovia Bank and Trust Company,N.A.(B):Supplement622
Case 51:Waite First Securities625
Case 52:The Waldorf Property632