图书介绍
材料的电子特性 第 3 版PDF|Epub|txt|kindle电子书版本网盘下载
![材料的电子特性 第 3 版](https://www.shukui.net/cover/36/31866142.jpg)
- R. E. Hummel著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506265893
- 出版时间:2003
- 标注页数:438页
- 文件大小:106MB
- 文件页数:40073028页
- 主题词:
PDF下载
下载说明
材料的电子特性 第 3 版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ Fundamentals of Electron Theory1
CHAPTER 1 Introduction3
CHAPTER 2 The Wave-Particle Duality6
Problems13
CHAPTER 3 The Schrodinger Equation14
3.1.The Time-Independent Schrodinger Equation14
3.2.The Time-Dependent Schrodinger Equation15
3.3.Special Properties of Vibrational Problems16
Problems17
CHAPTER 4 Solution of the Schrodinger Equation for Four Specific Problems18
4.1.Free Electrons18
4.2.Electron in a Potential Well (Bound Electron)20
4.3.Finite Potential Barrier (Tunnel Effect)24
4.4.Electron in a Periodic Field of a Crystal (the Solid State)28
Problems35
CHAPTER 5 Energy Bands in Crystals36
5.1.One-Dimensional Zone Schemes36
5.2.One- and Two-Dimensional Brillouin Zones41
5.3.Three-Dimensional Brillouin Zones45
5.4.Wigner-Seitz Cells45
5.5.Translation Vectors and the Reciprocal Lattice47
5.6.Free Electron Bands52
5.7.Band Structures for Some Metals and Semiconductors55
5.8.Curves and Planes of Equal Energy58
Problems60
CHAPTER6 Electrons in a Crystal62
6.1.Fermi Energy and Fermi Surface62
6.2.Fermi Distribution Function63
6.3.Density of States64
6.4.Population Density66
6.5.Complete Density of States Function Within a Band68
6.6.Consequences of the Band Model69
6.7.Effective Mass70
6.8.Conclusion72
Problems73
Suggestions for Further Reading (Part Ⅰ)74
PART Ⅱ Electrical Properties of Materials75
CHAPTER 7 Electrical Conduction in Metals and Alloys77
7.1.Introduction77
7.2.Survey78
7.3.Conductivity—Classical Electron Theory80
7.4.Conductivity—Quantum Mechanical Considerations83
7.5.Experimental Results and Their Interpretation87
7.5.1.Pure Metals87
7.5.2.Alloys88
7.5.3.Ordering90
7.6.Superconductivity91
7.6.1.Experimental Results92
7.6.2.Theory97
7.7.Thermoelectric Phenomena100
Problems103
CHAPTER 8 Semiconductors104
8.1.Band Structure104
8.2.Intrinsic Semiconductors106
8.3.Extrinsic Semiconductors111
8.3.1.Donors and Acceptors111
8.3.2.Band Structure112
8.3.3.Temperature Dependence of the Number of Carriers113
8.3.4.Conductivity114
8.3.5.Fermi Energy115
8.4.Effective Mass115
8.5.Hall Effect116
8.6.Compound Semiconductors118
8.7.Semiconductor Devices119
8.7.1.Metal-Semiconductor Contacts119
8.7.2.Rectifying Contacts (Schottky Barrier Contacts)120
8.7.3.Ohmic Contacts (Metallizations)124
8.7.4.p-n Rectifier (Diode)125
8.7.5.Zener Diode127
8.7.6.Solar Cell (Photodiode)129
8.7.7.Avalanche Photodiode132
8.7.8.Tunnel Diode132
8.7.9.Transistors134
8.7.10.Quantum Semiconductor Devices142
8.7.11.Semiconductor Device Fabrication146
8.7.12.Digital Circuits and Memory Devices155
Problems162
CHAPTER 9 Electrical Properties of Polymers,Ceramics,Dielectrics,and Amorphous Materials166
9.1.Conducting Polymers and Organic Metals166
9.2.Ionic Conduction174
9.3.Conduction in Metal Oxides177
9.4.Amorphous Materials (Metallic Glasses)179
9.4.1.Xerography184
9.5.Dielectric Properties185
9.6.Ferroelectricity,Piezoelectricity,and Electrostriction189
Problems192
Suggestions for Further Reading (Part Ⅱ)192
PART Ⅲ Optical Properties of Materials195
CHAPTER 10 The Optical Constants197
10.1.Introduction197
10.2.Index of Refraction,n199
10.3.Damping Constant,k200
10.4.Characteristic Penetration Depth,W,and Absorbance,x203
10.5.Reflectivity,R,and Transmittance,T204
10.6.Hagen-Rubens Relation206
Problems207
CHAPTER 11 Atomistic Theory of the Optical Properties208
11.1.Survey208
11.2.Free Electrons Without Damping210
11.3.Free Electrons With Damping (Classical Free Electron Theory of Metals)214
11.4.Special Cases217
11.5.Reflectivity218
11.6.Bound Electrons (Classical Electron Theory of Dielectric Materials)219
11.7.Discussion of the Lorentz Equations for Special Cases222
11.7.1.High Frequencies222
11.7.2.Small Damping223
11.7.3:Absorption Near v 0223
11.7.4.More Than One Oscillator224
11.8.Contributions of Free Electrons and Harmonic Oscillators to the Optical Constants224
Problems225
CHAPTER 12 Quantum Mechanical Treatment of the Optical Properties227
12.1.Introduction227
12.2.Absorption of Light by Interband and Intraband Transitions227
12.3.Optical Spectra of Materials231
12.4.Dispersion231
Problems236
CHAPTER 13 Applications238
13.1.Measurement of the Optical Properties238
13.1.1.Kramers-Kronig Analysis (Dispersion Relations)239
13.1.2.Spectroscopic Ellipsometry239
13.1.3.Differential Reflectometry242
13.2.Optical Spectra of Pure Metals244
13.2.1.Reflection Spectra244
13.2.2.Plasma Oscillations249
13.3.Optical Spectra of Alloys250
13.4.Ordering254
13.5.Corrosion256
13.6.Semiconductors257
13.7.Insulators (Dielectric Materials and Glass Fibers)260
13.8.Emission of Light263
13.8.1.Spontaneous Emission263
13.8.2.Stimulated Emission (Lasers)264
13.8.3.Helium-Neon Laser268
13.8.4.Carbon Dioxide Laser270
13.8.5.Semiconductor Laser270
13.8.6.Direct-Versus Indirect-Band Gap Semiconductor Lasers271
13.8.7.Wavelength of Emitted Light272
13.8.8.Threshold Current Density274
13.8.9.Homojunction Versus Heterojunction Lasers274
13.8.10.Laser Modulation276
13.8.11.Laser Amplifier276
13.8.12.Quantum Well Lasers278
13.8.13.Light-Emitting Diodes (LEDs)279
13.8.14.Liquid Crystal Displays (LCDs)281
13.8.15.Emissive Flat-Panel Displays283
13.9.Integrated Optoelectronics285
13.9.1.Passive Waveguides285
13.9.2.Electro-Optical Waveguides (EOW)287
13.9.3.Optical Modulators and Switches288
13.9.4.Coupling and Device Integration289
13.9.5.Energy Losses291
13.9.6.Photonics293
13.10.Optical Storage Devices293
13.11.The Optical Computer296
13.12.X-Ray Emission299
Problems301
Suggestions for Further Reading (Part Ⅲ)301
PART Ⅳ Magnetic Properties of Materials303
CHAPTER 14 Foundations of Magnetism305
14.1.Introduction305
14.2.Basic Concepts in Magnetism306
14.3.Units310
Problems310
CHAPTER 15 Magnetic Phenomena and Their Interpretation—Classical Approach312
15.1.Overview312
15.1.1.Diamagnetism312
15.1.2.Paramagnetism314
15.1.3.Ferromagnetism317
15.1.4.Antiferromagnetism323
15.1.5.Ferrimagnetism325
15.2.Langevin Theory of Diamagnetism327
15.3.Langevin Theory of (Electron Orbit) Paramagnetism329
15.4.Molecular Field Theory333
Problems336
CHAPTER 16 Quantum Mechanical Considerations338
16.1.Paramagnetism and Diamagnetism338
16.2.Ferromagnetism and Antiferromagnetism343
Problems347
CHAPTER 17 Applications349
17.1.Introduction349
17.2.Electrical Steels (Soft Magnetic Materials)349
17.2.1.Core Losses350
17.2.2.Grain Orientation352
17.2.3.Composition of Core Materials354
17.2.4.Amorphous Ferromagnetics354
17.3.Permanent Magnets (Hard Magnetic Materials)355
17.4.Magnetic Recording and Magnetic Memories358
Problems364
Suggestions for Further Reading (PartⅣ)364
PART Ⅴ Thermal Properties of Materials365
CHAPTER 18 Introduction367
CHAPTER 19 Fundamentals of Thermal Properties370
19.1.Heat,Work,and Energy370
19.2.Heat Capacity,C’371
19.3.Specific Heat Capacity,c372
19.4.Molar Heat Capacity,Cv372
19.5.Thermal Conductivity,K374
19.6.The Ideal Gas Equation375
19.7.Kinetic Energy of Gases376
Problems377
CHAPTER20 Heat Capacity379
20.1.Classical (Atomistic) Theory of Heat Capacity379
20.2.Quantum Mechanical Considerations—The Phonon381
20.2.1.Einstein Model381
20.2.2.Debye Model384
20.3.Electronic Contribution to the Heat Capacity385
Problems389
CHAPTER 21 Thermal Conduction390
21.1.Thermal Conduction in Metals and Alloys—Classical Approach390
21.2.Thermal Conduction in Metals and Alloys—Quantum Mechanical Considerations392
21.3.Thermal Conduction in Dielectric Materials393
Problems395
CHAPTER22 Thermal Expansion397
Problems399
Suggestions for Further Reading (PartⅤ)399
Appendices401
App.1.Periodic Disturbances403
App.2.Euler Equations407
App.3.Summary of Quantum Number Characteristics408
App.4.Tables410
App.5.About Solving Problems and Solutions to Problems420
Index426