图书介绍
信用风险的建模、评估和对冲 英文PDF|Epub|txt|kindle电子书版本网盘下载
![信用风险的建模、评估和对冲 英文](https://www.shukui.net/cover/68/35009099.jpg)
- (美)别莱茨基(BIELECKIT.R.)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7510058080
- 出版时间:2013
- 标注页数:501页
- 文件大小:107MB
- 文件页数:522页
- 主题词:
PDF下载
下载说明
信用风险的建模、评估和对冲 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ.Structural Approach3
1.Introduction to Credit Risk3
1.1 Corporate Bonds4
1.1.1 Recovery Rules5
1.1.2 Safety Covenants6
1.1.3 Credit Spreads7
1.1.4 Credit Ratings7
1.1.5 Corporate Coupon Bonds8
1.1.6 Fixed and Floating Rate Notes9
1.1.7 Bank Loans and Sovereign Debt11
1.1.8 Cross Default11
1.1.9 Default Correlations11
1.2 Vulnerable Claims12
1.2.1 Vulnerable Claims with Unilateral Default Risk12
1.2.2 Vulnerable Claims with Bilateral Default Risk13
1.2.3 Defaultable Interest Rate Contracts14
1.3 Credit Derivatives16
1.3.1 Default Swaps and Options18
1.3.2 Total Rate of Return Swaps21
1.3.3 Credit Linked Notes22
1.3.4 Asset Swaps24
1.3.5 First-to-Default Contracts24
1.3.6 Credit Spread Swaps and Options25
1.4 Quantitative Models of Credit Risk26
1.4.1 Structural Models26
1.4.2 Reduced-Form Models27
1.4.3 Credit Risk Management29
1.4.4 Liquidity Risk30
1.4.5 Econometric Studies30
2.Corporate Debt31
2.1 Defaultable Claims33
2.1.1 Risk-Neutral Valuation Formula34
2.1.2 Self-Financing Trading Strategies37
2.1.3 Martingale Measures38
2.2 PDE Approach40
2.2.1 PDE for the Value Function44
2.2.2 Corporate Zero-Coupon Bonds47
2.2.3 Corporate Coupon Bond50
2.3 Merton's Approach to Corporate Debt51
2.3.1 Merton's Model with Deterministic Interest Rates51
2.3.2 Distance-to-Default57
2.4 Extensions of Merton's Approach58
2.4.1 Models with Stochastic Interest Rates59
2.4.2 Discontinuous Value Process60
2.4.3 Buffet's Approach64
3.First-Passage-Time Models65
3.1 Properties of First Passage Times66
3.1.1 Probability Law of the First Passage Time67
3.1.2 Joint Probability Law of Y and τ69
3.2 Black and Cox Model71
3.2.1 Corporate Zero-Coupon Bond71
3.2.2 Corporate Coupon Bond79
3.2.3 Corporate Consol Bond81
3.3 Optimal Capital Structure82
3.3.1 Black and Cox Approach82
3.3.2 Leland's Approach84
3.3.3 Leland and Toft Approach86
3.3.4 Further Developments88
3.4 Models with Stochastic Interest Rates90
3.4.1 Kim,Ramaswamy and Sundaresan Approach96
3.4.2 Longstaff and Schwartz Approach98
3.4.3 Cathcart and E1-Jahel Approach103
3.4.4 Briys and de Varenne Approach104
3.4.5 Saá-Requejo and Santa-Clara Approach107
3.5 Further Developments113
3.5.1 Convertible Bonds113
3.5.2 Jump-Diffusion Models113
3.5.3 Incomplete Accounting Data113
3.6 Dependent Defaults:Structural Approach114
3.6.1 Default Correlations:J.P.Morgan's Approach116
3.6.2 Default Correlations:Zhou's Approach117
Part Ⅱ.Hazard Processes123
4.Hazard Function of a Random Time123
4.1 Conditional Expectations w.r.t.Natural Filtrations123
4.2 Martingales Associated with a Continuous Hazard Function127
4.3 Martingale Representation Theorem131
4.4 Change of a Probability Measure133
4.5 Martingale Characterization of the Hazard Function137
4.6 Compensator of a Random Time140
5.Hazard Process of a Random Time141
5.1 Hazard Process Γ141
5.1.1 Conditional Expectations143
5.1.2 Semimartingale Representation of the Stopped Process150
5.1.3 Martingales Associated with the Hazard Process Γ152
5.1.4 Stochastic Intensity of a Random Time155
5.2 Martingale Representation Theorems156
5.2.1 General Case156
5.2.2 Case of a Brownian Filtration159
5.3 Change of a Probability Measure162
6.Martingale Hazard Process165
6.1 Martingale Hazard Process Λ165
6.1.1 Martingale Invariance Property166
6.1.2 Evaluation of Λ: Special Case167
6.1.3 Evaluation of Λ: General Case169
6.1.4 Uniqueness of a Martingale Hazard Process Λ172
6.2 Relationships Between Hazard Processes Γ and Λ173
6.3 Martingale Representation Theorem177
6.4 Case of the Martingale Invariance Property179
6.4.1 Valuation of Defaultable Claims180
6.4.2 Case of a Stopping Time182
6.5 Random Time with a Given Hazard Process183
6.6 Poisson Process and Conditional Poisson Process186
7.Case of Several Random Times197
7.1 Minimum of Several Random Times197
7.1.1 Hazard Function198
7.1.2 Martingale Hazard Process198
7.1.3 Martingale Representation Theorem200
7.2 Change of a Probability Measure203
7.3 Kusuoka's Counter-Example209
7.3.1 Validity of Condition(F.2)216
7.3.2 Validity of Condition(M.1)218
Part Ⅲ.Reduced-Form Modeling221
8.Intensity-Based Valuation of Defaultable Claims221
8.1 Defaultable Claims222
8.1.1 Risk-Neutral Valuation Formula223
8.2 Valuation via the Hazard Process225
8.2.1 Canonical Construction of a Default Time227
8.2.2 Integral Representation of the Value Process230
8.2.3 Case of a Deterministic Intensity232
8.2.4 Implied Probabilities of Default234
8.2.5 Exogenous Recovery Rules236
8.3 Valuation via the Martingale Approach239
8.3.1 Martingale Hypotheses242
8.3.2 Endogenous Recovery Rules243
8.4 Hedging of Defaultable Claims246
8.5 General Reduced-Form Approach250
8.6 Reduced-Form Models with State Variables253
8.6.1 Lando's Approach253
8.6.2 Duffie and Singleton Approach255
8.6.3 Hybrid Methodologies259
8.6.4 Credit Spread Models264
9.Conditionally Independent Defaults265
9.1 Basket Credit Derivatives266
9.1.1 Mutually Independent Default Times267
9.1.2 Conditionally Independent Default Times268
9.1.3 Valuation of the ith-to-Default Contract274
9.1.4 Vanilla Default Swaps of Basket Type281
9.2 Default Correlations and Conditional Probabilities284
9.2.1 Default Correlations284
9.2.2 Conditional Probabilities287
10.Dependent Defaults293
10.1 Dependent Intensities295
10.1.1 Kusuoka's Approach295
10.1.2 Jarrow and Yu Approach296
10.2 Martingale Approach to Basket Credit Derivatives306
10.2.1 Valuation of the ith-to-Default Claims311
11.Markov Chains313
11.1 Discrete-Time Markov Chains314
11.1.1 Change of a Probability Measure316
11.1.2 The Law of the Absorption Time320
11.1.3 Discrete-Time Conditionally Markov Chains322
11.2 Continuous-Time Markov Chains324
11.2.1 Embedded Discrete-Time Markov Chain329
11.2.2 Conditional Expectations329
11.2.3 Probability Distribution of the Absorption Time332
11.2.4 Martingales Associated with Transitions333
11.2.5 Change of a Probability Measure334
11.2.6 Identification of the Intensity Matrix338
11.3 Continuous-Time Conditionally Markov Chains340
11.3.1 Construction of a Conditionally Markov Chain342
11.3.2 Conditional Markov Property346
11.3.3 Associated Local Martingales347
11.3.4 Forward Kolmogorov Equation350
12.Markovian Models of Credit Migrations351
12.1 JLT Markovian Model and its Extensions352
12.1.1 JLT Model: Discrete-Time Case354
12.1.2 JLT Model: Continuous-Time Case362
12.1.3 Kijima and Komoribayashi Model367
12.1.4 Das and Tufano Model369
12.1.5 Thomas,Allen and Morkel-Kingsbury Model371
12.2 Conditionally Markov Models373
12.2.1 Lando's Approach374
12.3 Correlated Migrations376
12.3.1 Huge and Lando Approach380
13.Heath-Jarrow-Morton Type Models385
13.1 HJM Model with Default386
13.1.1 Model's Assumptions386
13.1.2 Default-Free Term Structure388
13.1.3 Pre-Default Value of a Corporate Bond390
13.1.4 Dynamics of Forward Credit Spreads392
13.1.5 Default Time of a Corporate Bond394
13.1.6 Case of Zero Recovery397
13.1.7 Default-Free and Defaultable LIBOR Rates398
13.1.8 Case of a Non-Zero Recovery Rate400
13.1.9 Alternative Recovery Rules403
13.2 HJM Model with Credit Migrations405
13.2.1 Model's Assumption405
13.2.2 Migration Process407
13.2.3 Special Case408
13.2.4 General Case410
13.2.5 Alternative Recovery Schemes413
13.2.6 Defaultable Coupon Bonds415
13.2.7 Default Correlations416
13.2.8 Market Prices of Interest Rate and Credit Risk417
13.3 Applications to Credit Derivatives421
13.3.1 Valuation of Credit Derivatives421
13.3.2 Hedging of Credit Derivatives422
14.Defaultable Market Rates423
14.1 Interest Rate Contracts with Default Risk424
14.1.1 Default-Free LIBOR and Swap Rates424
14.1.2 Defaultable Spot LIBOR Rates426
14.1.3 Defaultable Spot Swap Rates427
14.1.4 FRAs with Unilateral Default Risk428
14.1.5 Forward Swaps with Unilateral Default Risk432
14.2 Multi-Period IRAs with Unilateral Default Risk434
14.3 Multi-Period Defaultable Forward Nominal Rates438
14.4 Defaultable Swaps with Unilateral Default Risk441
14.4.1 Settlement of the 1st Kind442
14.4.2 Settlement of the 2nd Kind444
14.4.3 Settlement of the 3rd Kind445
14.4.4 Market Conventions446
14.5 Defaultable Swaps with Bilateral Default Risk447
14.6 Defaultable Forward Swap Rates449
14.6.1 Forward Swaps with Unilateral Default Risk449
14.6.2 Forward Swaps with Bilateral Default Risk450
15.Modeling of Market Rates451
15.1 Models of Default-Free Market Rates452
15.1.1 Modeling of Forward LIBOR Rates452
15.1.2 Modeling of Forward Swap Rates458
15.2 Modeling of Defaultable Forward LIBOR Rates465
15.2.1 Lotz and Schl?gl Approach465
15.2.2 Sch?nbucher's Approach469
References479
Basic Notation495
Subject Index497