图书介绍

数学物理方法PDF|Epub|txt|kindle电子书版本网盘下载

数学物理方法
  • 何淑芷,陈启流编 著
  • 出版社: 广州:华南理工大学出版社
  • ISBN:7562306575
  • 出版时间:1994
  • 标注页数:506页
  • 文件大小:10MB
  • 文件页数:517页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数学物理方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

前言页1

第一篇 复变函数论2

第一章 复变函数2

1 复平面上的点集 区域2

2 复变函数的概念7

3 复变函数的极限与连续10

习题一15

第二章 解析函数17

1 复变函数的导数17

2 解析函数20

3 调和函数26

4 初等函数31

5 平面场的复势38

习题二44

1 复变函数积分的概念48

第三章 复变函数的积分48

2 积分的基本性质53

3 柯西(Cauchy)定理54

4 原函数56

5 复合闭路定理58

6 柯西积分公式62

7 解析函数的高阶导数66

习题三70

第四章 级数73

1 复数项级数73

2 幂级数75

3 泰勒(Taylor)级数84

4 罗朗(Laurent)级数90

习题四97

第五章 留数99

1 孤立奇点99

2 函数的零点与极点的关系102

3 在无穷远点邻域的讨论105

4 留数107

5 在无穷远点处的留数113

6 留数在定积分计算上的应用115

习题五124

第六章 保角映射126

1 保角映射的概念126

2 几种简单的映射130

3 分式线性映射133

4 几个典型的分式线性映射136

5 幂函数与根式函数所构成的映射146

6 指数函数与对数函数所构成的映射150

习题六153

第七章 拉普拉斯变换158

1 拉普拉斯变换的概念158

第二篇 积分变换158

2 单位脉冲函数及其拉氏变换162

3 拉氏变换的性质164

4 拉氏逆变换175

5 卷积178

6 拉氏变换在解常微分方程中的应用181

习题七183

第八章 傅里叶(Fourier)变换186

1 傅里叶积分186

2 傅里叶变换189

3 傅氏变换的性质195

4 卷积197

习题八200

第三篇 特殊函数204

第九章 Г函数和B函数204

1 Г函数204

2 B函数209

习题九211

第十章 线性常微分方程级数解法212

1 常点邻域的级数解法212

2 正则奇点邻域的级数解法219

习题十225

第十一章 贝塞尔(Bessel)函数227

1 贝塞尔函数与第二、三类贝塞尔函数227

2 递推公式--不同阶贝塞尔函数的关系232

3 贝塞尔函数的零点235

4 函数的傅里叶-贝塞尔级数展开236

5 变形的贝塞尔函数243

6 可化为贝塞尔方程的微分方程247

习题十一248

第十二章 勒让德(Legendre)多项式251

1 勒让德多项式的定义251

2 母函数与递推公式255

3 正交性 傅里叶-勒让德级数259

4 缔合勒让德多项式262

习题十二265

第四篇 数学物理方程270

第十三章 数学物理方程定解问题270

1 典型方程的推导270

2 定解条件的推导280

3 定解问题的提法及适定性概念287

4 偏微分方程的解与线性定解问题解的叠加原理290

习题十三296

第十四章 分离变量法299

1 直角坐标系下的分离变量法300

2 极坐标系下位势方程边值问题的分离变量法316

3 离维方程混合问题及边值问题的分离变量法324

4 斯图姆-刘维尔(Sturm-Liouville)问题345

习题十四353

第十五章 二阶线性偏微分方程的分类与化简359

1 两个自变量的二阶线性方程359

2 多个自变量的二阶线性方程的分类与化简368

3 常系数二阶线性方程的化简372

习题十五375

第十六章 行波法377

1 行波法的基本概念378

2 其他定解问题 波的反射386

3 高维波动方程的初值问题393

4 非齐次波动方程初值问题 推迟势404

习题十六409

第十七章 拉普拉斯方程的格林函数法413

1 格林公式 调和函数的基本性质413

2 格林函数418

3 用电象法求几种特殊区域的格林函数421

4 保角变换方法对二维狄氏问题的应用426

习题十七435

第十八章 积分变换法437

1 无穷区间的固有值问题437

2 傅里叶变换解题方法 积分变换解题的程序441

3 用积分变换法解题举例444

习题十八460

附录 场论的基本概念 正交曲线坐标系中的调和量463

一、场的概念463

二、数量场的梯度464

三、矢量场的散度和旋度466

四、算子、梯度、散度、旋度及调和量在正交曲线坐标系中的表示式470

五、有势场与调和场473

六、平面调和场474

附表476

习题答案483

热门推荐