图书介绍
Discrete Mathematics Its Applications Sixth Edition=离散数学及其应用(英文版·第6版)PDF|Epub|txt|kindle电子书版本网盘下载
![Discrete Mathematics Its Applications Sixth Edition=离散数学及其应用(英文版·第6版)](https://www.shukui.net/cover/12/33926383.jpg)
- Kenneth H. Rosen 著
- 出版社: 机械工业出版社
- ISBN:7111239352
- 出版时间:2008
- 标注页数:890页
- 文件大小:126MB
- 文件页数:917页
- 主题词:
PDF下载
下载说明
Discrete Mathematics Its Applications Sixth Edition=离散数学及其应用(英文版·第6版)PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 The Foundations:Logic and Proofs1
1.1 Propositional Logic1
1.2 Propositional Equivalences21
1.3 Predicates and Quantifiers30
1.4 Nested Quantifiers50
1.5 Rules of Inference63
1.6 Introduction to Proofs75
1.7 Proof Methods and Strategy86
End-of-Chapter Material104
2 Basic Structures:Sets,Functions,Sequences,and Sums111
2.1 Sets111
2.2 Set Operations121
2.3 Functions133
2.4 Sequences and Summations149
End-of-Chapter Material163
3 The Fundamentals:Algorithms,the Integers,and Matrices167
3.1 Algorithms167
3.2 The Growth of Functions180
3.3 Complexity of Algorithms193
3.4 The Integers and Division200
3.5 Primes and Greatest Common Divisors210
3.6 Integers and Algorithms219
3.7 Applications of Number Theory231
3.8 Matrices246
End-of-Chapter Material257
4 Induction and Recursion263
4.1 Mathematical Induction263
4.2 Strong Induction and Well-Ordering283
4.3 Recursive Definitions and Structural Induction294
4.4 Recursive Algorithms311
4.5 Program Correctness322
End-of-Chapter Material328
5 Counting335
5.1 The Basics of Counting335
5.2 The Pigeonhole Principle347
5.3 Permutations and Combinations355
5.4 Binomial Coefficients363
5.5 Generalized Permutations and Combinations370
5.6 Generating Permutations and Combinations382
End-of-Chapter Material386
6 Discrete Probability393
6.1 An Introduction to Discrete Probability393
6.2 Probability Theory400
6.3 Bayes’ Theorem417
6.4 Expected Value and Variance426
End-of-Chapter Material442
7 Advanced Counting Techniques449
7.1 Recurrence Relations449
7.2 Solving Linear Recurrence Relations460
7.3 Divide-and-Conquer Algorithms and Recurrence Relations474
7.4 Generating Functions484
7.5 Inclusion-Exclusion499
7.6 Applications of Inclusion-Exclusion505
End-of-Chapter Material513
8 Relations519
8.1 Relations and Their Properties519
8.2 n-ary Relations and Their Applications530
8.3 Representing Relations537
8.4 Closures of Relations544
8.5 Equivalence Relations555
8.6 Partial Orderings566
End-of-Chapter Material581
9 Graphs589
9.1 Graphs and Graph Models589
9.2 Graph Terminology and Special Types of Graphs597
9.3 Representing Graphs and Graph Isomorphism611
9.4 Connectivity621
9.5 Euler and Hamilton Paths633
9.6 Shortest-Path Problems647
9.7 Planar Graphs657
9.8 Graph Coloring666
End-of-Chapter Material675
10 Trees683
10.1 Introduction to Trees683
10.2 Applications of Trees695
10.3 Tree Traversal710
10.4 Spanning Trees724
10.5 Minimum Spanning Trees737
End-of-Chapter Material743
11 Boolean Algebra749
11.1 Boolean Functions749
11.2 Representing Boolean Functions757
11.3 Logic Gates760
11.4 Minimization of Circuits766
End-of-Chapter Material781
12 Modeling Computation785
12.1 Languages and Grammars785
12.2 Finite-State Machines with Output796
12.3 Finite-State Machines with No Output804
12.4 Language Recognition817
12.5 Turing Machines827
End-of-Chapter Material838
Appendixes1
A-1 Axioms for the Real Numbers and the Positive Integers1
A-2 Exponential and Logarithmic Functions7
A-3 Pseudocode10
Suggested Readings1
Answers to Odd-Numbered Exercises ?1
Index of Biographies1
Index2