图书介绍
ALGEBRAIC GRAPH THEORYPDF|Epub|txt|kindle电子书版本网盘下载
- CHRIS GODSIL AND GORDON ROYLE 著
- 出版社: SPRINGER
- ISBN:
- 出版时间:2001
- 标注页数:220页
- 文件大小:8MB
- 文件页数:239页
- 主题词:
PDF下载
下载说明
ALGEBRAIC GRAPH THEORYPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Graphs1
1.1 Graphs1
1.2 Subgraphs3
1.3 Automorphisms4
1.4 Homomorphisms6
1.5 Circulant Graphs8
1.6 Johnson Graphs9
1.7 Line Graphs10
1.8 Planar Graphs12
Exercises16
Notes17
References18
2 Groups19
2.1 Permutation Groups19
2.2 Counting20
2.3 Asymmetric Graphs22
2.4 Orbits on Pairs25
2.5 Primitivity27
2.6 Primitivity and Connectivity29
Exercises30
Notes32
References32
3 Trnnsitive Graphs33
3.1 Vertex-Transitive Graphs33
3.2 Edge-Transitive Graphs35
3.3 Edge Connectivity37
3.4 Vertex Connectivity39
3.5 Matchings43
3.6 Hamilton Paths and Cycles45
3.7 Cayley Graphs47
3.8 Directed Cayley Graphs with No Hamilton Cycles49
3.9 Retracts51
3.10 Transpositions52
Exercises54
Notes56
References57
4 Arc-Transitive Graphs59
4.1 Arc-Transitive Graphs59
4.2 Arc Graphs61
4.3 Cubic Arc-Transitive Graphs63
4.4 The Petersen Graph64
4.5 Distance-Transitive Graphs66
4.6 The Coxeter Graph69
4.7 Tutte’s 8-Cage71
Exercises74
Notes76
References76
5 Generalized Polygons and Moore Graphs77
5.1 Incidence Graphs78
5.2 Projective Planes79
5.3 A Family of Projective Planes80
5.4 Generalized Quadrangles81
5.5 A Family of Generalized Quadrangles83
5.6 Generalized Polygons84
5.7 Two Generalized Hexagons88
5.8 Moore Graphs90
5.9 The Hoffman-Singleton Graph92
5.10 Designs94
Exercises97
Notes100
References100
6 Homomorphisms103
6.1 The Basics103
6.2 Cores104
6.3 Products106
6.4 The Map Graph108
6.5 Counting Homomorphisms109
6.6 Products and Colourings110
6.7 Uniquely Colourable Graphs113
6.8 Foldings and Covers114
6.9 Cores with No Triangles116
6.10 The Andrasfai Graphs118
6.11 Colouring Andrasfai Graphs119
6.12 A Characterization121
6.13 Cores of Vertex-Transitive Graphs123
6.14 Cores of Cubic Vertex-Transitive Graphs125
Exercises128
Notes132
References133
7 Kneser Graphs135
7.1 Fractional Colourings and Cliques135
7.2 Fractional Cliques136
7.3 Fractional Chromatic Number137
7.4 Homomorphisms and Fractional Colourings138
7.5 Duality141
7.6 Imperfect Graphs142
7.7 Cyclic Interval Graphs145
7.8 Erdos-Ko-Rado146
7.9 Homomorphisms of Kneser Graphs148
7.10 Induced Homomorphisms149
7.11 The Chromatic Number of the Kneser Graph150
7.12 Gale’s Theorem152
7.13 Welzl’s Theorem153
7.14 The Cartesian Product154
7.15 Strong Products and Colourings155
Exercises156
Notes159
References160
8 Matrix Theory163
8.1 The Adjacency Matrix163
8.2 The Incidence Matrix165
8.3 The Incidence Matrix of an Oriented Graph167
8.4 Symmetric Matrices169
8.5 Eigenvectors171
8.6 Positive Semidefinite Matrices173
8.7 Subharmonic Functions175
8.8 The Perron-Frobenius Theorem178
8.9 The Rank of a Symmetric Matrix179
8.10 The Binary Rank of the Adjacency Matrix181
8.11 The Symplectic Graphs183
8.12 Speetral Decomposition185
8.13 Ratlonal Functions187
Exercises188
Notes192
References192
9 Interlacing193
9.1 Interlacing193
9.2 Inside and Outside the Petersen Graph195
9.3 Equitable Partitions195
9.4 Eigenvalues of Kneser Graphs199
9.5 More Interlacing202
9.6 More Applications203
9.7 Bipartite Subgraphs206
9.8 Fullerenes208
9.9 Stability of Fullerenes210
Exercises213
Notes215
References216
10 Strongly Regular Graphs217
10.1 Parameters218
10.2 Eigenvalues219
10.3 Some Characterizations221
10.4 Latin Square Graphs223
10.5 Small Strongly Regular Graphs226
10.6 Local Eigenvalues227
10.7 The Krein Bounds231
10.8 Generalized Quadrangles235
10.9 Lines of Size Three237
10.10 Quasi-Symmetric Designs239
10.11 The Witt Design on 23 Points241
10.12 The Symplectic Graphs242
Exercises244
Notes246
References247
11 Two-Graphs249
11.1 Equiangular Lines249
11.2 The Absolute Bound251
11.3 Tightness252
11.4 The Relative Bound253
11.5 Switching254
11.6 Regular Two-Graphs256
11.7 Switching and Strongly Regular Graphs258
11.8 The Two-Graph on 276 Vertices262
Exercises263
Notes263
References265
12 Line Graphs and Eigenvalues265
12.1 Generalized Line Graphs266
12.2 Star-Closed Sets of Lines267
12.3 Reflections268
12.4 Indecomposable Star-Closed Sets270
12.5 A Generating Set271
12.6 The Classification272
12.7 Root Systems274
12.8 Consequences276
12.9 A Strongly Regular Graph277
Exercises278
Notes278
References279
13 The Laplacian of a Graph279
13.1 The Laplacian Matrix281
13.2 Trees284
13.3 Representations287
13.4 Energy and Eigenvalues288
13.5 Connectivity290
13.6 Interlacing292
13.7 Conductance and Cutsets293
13.8 How to Draw a Graph295
13.9 The Generalized Laplacian298
13.10 Multiplicities300
13.11 Embeddings302
Exercises305
Notes306
References307
14 Cuts and Flows308
14.1 The Cut Space310
14.2 The Flow Space312
14.3 Planar Graphs313
14.4 Bases and Ear Decompositions315
14.5 Lattices316
14.6 Duality317
14.7 Integer Cuts and Flows319
14.8 Projections and Duals321
14.9 Chip Firing323
14.10 Two Bounds324
14.11 Recurrent States325
14.12 Critical States326
14.13 The Critical Group327
14.14 Voronoi Polyhedra329
14.15 Bicycles332
14.16 The Principal Tripartition334
Exercises336
Notes338
References338
15 The Rank Polynomial341
15.1 Rank Functions341
15.2 Matroids343
15.3 Duality344
15.4 Restriction and Contraction346
15.5 Codes347
15.6 The Deletion-Contraction Algorithm349
15.7 Bicycles in Binary Codes351
15.8 Two Graph Polynomials353
15.9 Rank Polynomial355
15.10 Evaluations of the Rank Polynomial357
15.11 The Weight Enumerator of a Code358
15.12 Colourings and Codes359
15.13 Signed Matroids361
15.14 Rotors363
15.15 Submodular Functions366
Exercises369
Notes371
References372
16 Knots373
16.1 Knots and Their Projections374
16.2 Reidemeister Moves376
16.3 Signed Plane Graphs379
16.4 Reidemeister moves on graphs381
16.5 Reidemeister Invariants383
16.6 The Kauffman Bracket385
16.7 The Jones Polynomial386
16.8 Connectivity388
Exercises391
Notes392
References392
17 Knots and Eulerian Cycles395
17.1 Eulerian Partitions and Tours395
17.2 The Medial Graph398
17.3 Link Components and Bicycles400
17.4 Gauss Codes403
17.5 Chords and Circles405
17.6 Flipping Words407
17.7 Characterizing Gauss Codes408
17.8 Bent Tours and Spanning Trees410
17.9 Bent Partitions and the Rank Polynomial413
17.10 Maps414
17.11 Orientable Maps417
17.12 Seifert Circles419
17.13 Seifert Circles and Rank420
Exercises423
Notes424
References425
Glossary of Symbols427
Index433