图书介绍
POLYMER COMPOSITES From Nano-to Macro-ScalePDF|Epub|txt|kindle电子书版本网盘下载
![POLYMER COMPOSITES From Nano-to Macro-Scale](https://www.shukui.net/cover/56/33301992.jpg)
- Klaus Friedrich 著
- 出版社: Inc
- ISBN:
- 出版时间:2005
- 标注页数:0页
- 文件大小:168MB
- 文件页数:388页
- 主题词:
PDF下载
下载说明
POLYMER COMPOSITES From Nano-to Macro-ScalePDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Nanocomposites:Structure and Properties1
Chapter 1 Carbon Nanotube-Reinforced Polymers:a State of the Art Review3
1 Introduction3
2 General Problems in Nanocomposite Technology4
3 Experimental6
3.1 Manufacturing of Multiple-Wall Carbon Nanotubes6
3.2 Treatment of Carbon Nanotubes7
3.3 Matrix Polymers7
3.4 Electron Microscopy7
3.5 Dynamic-Mechanical Thermal Analysis8
4 Results8
4.1 Comparison of the Multiple-Wall Carbon Nanotubes Studied8
4.2 Purification10
4.3 CNT/Epoxy Composites:Dispersion,Matrix Bonding,and Functionalization11
4.3.1 Dispersion11
4.3.2 Nanotube-Matrix Interaction13
4.3.3 Functionalization13
4.4 Microscopy15
4.4.1 Matrix Bonding to the Nanotubes15
4.4.2 Crack Bridging and Telescopic Pull-Outs16
4.5 Thermal and Mechanical Properties17
4.6 Electrical Properties18
5 Conclusions21
6 Acknowledgements21
7 References22
Chapter 2 Application of Non-Layered Nanoparticles in Polymer Modification25
1 Introduction25
2 Surface Treatment and Compounding27
2.1 Raw Materials27
2.2 Pregrafting of the Nanoparticles by Irradiation27
2.3 Characterization of the Irradiation Products28
2.4 Preparation of PP-Based Nanocomposites and Their Characterization28
2.5 Preparation of Epoxy-Based Nanocomposites and Their Characterization29
3 Thermoplastic Systems29
3.1 Effect of Irradiation Grafting Polymerization on the Nanoparticles29
3.2 Tensile Properties30
3.3 Fractography35
4 Thermosetting Systems36
4.1 Interfacial Interactions in the Composites36
4.2 Curing Behavior38
4.3 Friction and Wear Performance38
5 Conclusions42
6 Acknowledgements43
7 References43
Chapter 3 Reinforcement of Thermosetting Polymers by the Incorporation of Micro-and Nanoparticles45
1 Introduction45
2 Manufacturing of Thermosetting Nanocomposites47
3 Properties of Nanocomposites50
3.1 Stress-Strain Behavior50
3.2 Impact Behavior54
3.3 Stiffness-Impact Energy Relationship55
3.4 Dynamic Mechanical Properties56
3.5 Wear Performance57
4 Acknowledgements60
5 References60
Chapter 4 Polyimides Reinforced by a Sol-Gel Derived Organosilicon Nanophase:Synthesis and Structure-Property Relationships63
1 Nanocomposites Based on Flexible-Chain Polymers63
2 Nanocomposites Based on Semi-Rigid Chain Polymers(Polyimides)66
2.1 In Situ Generation of an Organosilicon Nanophase67
2.2 Structural Characterization68
2.3 Water Uptake69
2.4 Thermomechanical Performance70
2.5 Dielectric Properties72
3 Conclusions73
4 Acknowledgements74
5 References74
Chapter 5 Layered Silicate/Rubber Nanocomposites via Latex and Solution Intercalations77
1 Concept of Nanoreinforcement77
2 Production of Rubber/Clay Nanocomposites78
2.1 Latex Intercalation79
2.1.1 Nanocomposites from Rubber Latex79
2.1.2 Nanocomposites from Latex Blends81
2.1.3 Radiation-Vulcanized NR Latex84
2.2 Solvent-Assisted Intercalation87
3 Future Issues88
4 Acknowledgements88
5 References89
Chapter 6 Property Improvements of an Epoxy Resin by Nanosilica Particle Reinforcement91
1 Introduction and State of the Art91
2 Preparation and Characterization Techniques94
2.1 Basic Material Components94
2.2 Preparation of Nanosilica-Filled Epoxy Composites94
2.3 Structural and Mechanical Analysis95
2.3.1 Microstructure95
2.3.2 Viscosity Studies of the Unfilled and Filled Resin95
2.3.3 Mechanical Properties95
2.3.4 Tribological Properties96
2.3.5 Failure Analysis96
3 Microstructural and Rheological Details96
3.1 Particle Distribution96
3.2 Viscosity98
4 Mechanical Properties99
4.1 Three-Point Bending99
4.2 Microhardness99
4.3 Fracture Toughness101
4.4 Tribological Properties101
5 Conclusions103
6 Acknowledgements104
7 References104
Part Ⅱ Special Characterization Methods and Modeling107
Chapter 7 Micro-Scratch Testing and Finite Element Simulation of Wear Mechanisms of Polymer Composites109
1 Introduction109
2 Micro-Scratch Testing110
3 The Representative Wear Mechanisms113
4 Wear Considerations by Finite Element Contact Analysis114
4.1 Finite Element Macro/Micro-Contact Models115
4.2 Normal Fiber Orientation116
4.3 Parallel Fiber Orientation118
4.4 Anti-Parallel Fiber Orientation120
5 Finite Element Simulation of the Fiber/Matrix Debonding121
5.1 Debonding Model and Interface Elements122
5.1.1 Interface Elements122
5.1.2 Conditions of Debonding123
5.1.3 Unloading Considerations125
5.1.4 The Debonding Algorithm125
5.2 Calculations for N-Oriented Carbon Fibers in a PEEK Matrix126
6 Conclusions129
7 Acknowledgements130
8 References130
Chapter 8 Determination of the Interface Strength of Polymer-Polymer Joints by a Curved Interface Tensile Test133
1 Introduction133
2 Curved Interface Tensile Test136
3 Stress Calculation by Finite-Element Analysis137
3.1 Flat Interface138
3.2 Curved Interface138
4 Experimental Observations140
4.1 Materials and Specimen Preparation140
4.2 Tensile Tests and Strain Estimation142
4.3 Determination of the Adhesion Strength144
5 Conclusions and Outlook145
6 References146
Chapter 9 Manufacturing and Characterization of Microfibrillar Reinforced Composites from Polymer Blends149
1 Introduction149
2 Materials,Processing,and Characterization Techniques151
3 Structure and Properties of MFCs153
3.1 Structure and Properties of MFCs Based on PET/PP Blends153
3.1.1 Morphology153
3.1.2 Mechanical Properties of the Drawn Blends After Processing157
3.2 Structure and Properties of MFCs Based on LCP/PPE Blends159
3.2.1 Morphology159
3.2.2 Mechanical Properties of Injection Molded LCP/PPE Blends with MFC Structure162
4 Conclusions164
5 Acknowledgements165
6 References165
Chapter 10 Tribological Characteristics of Micro-and Nanoparticle Filled Polymer Composites169
1 Introduction169
2 Influence of Particle Size:from Micro-to Nanometer170
3 Influence of the Nanoparticle Volume Content171
4 Particle-Filled Polytetrafluoroethylene174
5 Integration of Inorganic Particles With Traditional Fillers175
5.1 Inorganic Particles and Other Fillers175
5.2 Combinative Effect of Nanoparticles and Short Carbon Fibers175
6 Conclusion182
7 Acknowledgement182
8 References182
Part Ⅲ Macrocomposites:Processing and Application187
Chapter 11 Production of Thermoplastic Towpregs and Towpreg-Based Composites189
1 Introduction189
2 Raw Materials190
3 Production of Towpregs190
3.1 Process and Equipment Description190
3.2 Relationships Between Final Properties and Processing Conditions192
3.2.1 Parameters Affecting the Polymer Powder Deposition192
3.2.2 Influence of the Processing Conditions on the Final Composite Properties193
4 Production of Towpreg-Based Composites194
4.1 Compression Molding194
4.1.1 Process Description194
4.1.2 Molding Conditions194
4.2 Process Modeling195
4.2.1 Isothermal Consolidation196
4.2.2 Non-Isothermal Consolidation197
4.2.3 Validation of the Consolidation Model198
4.3 Pultrusion200
4.3.1 Process Description200
4.3.2 Processing Conditions201
4.3.3 Process Modeling201
4.4 Filament Winding203
4.4.1 Process Description203
4.4.2 Processing Conditions203
4.4.3 Relationships Between Final Properties and Processing Conditions204
4.5 Long Fiber-Reinforced Composite Stamping206
4.5.1 Process Description206
4.5.2 Processing Conditions206
5 Composite Properties206
5.1 Mechanical Properties of Continuous Fiber-Reinforced Composites207
5.2 Mechanical Properties of Discontinuous Fiber-Reinforced Composites207
6 Conclusions211
7 Acknowledgements211
8 References212
Chapter 12 Manufacturing of Tailored Reinforcement for Liquid Composite Molding Processes215
1 Introduction215
2 Pre-selection of Sewing Thread217
2.1 Selection Criteria217
2.2 Polyester Thread in Global Preform Sewing219
3 Tailored Reinforcements220
4 Stitching Parameters and Their Influence on the Fiber-Reinforced Polymer Composites221
4.1 Machine Parameters221
4.1.1 Thread Tension221
4.1.2 Presser Foot Pressure223
4.2 Stitching Pattern224
5 Quality Secured Preforming225
5.1 Macro Preform Quality225
5.2 Micro Preform Quality225
5.3 Fiber Disturbance at Seams226
6 Liquid Composite Molding Process for Net-Shape Preforms227
6.1 Preform LCM Process Chain227
6.2 Thermal Behavior of Seam in FRPC228
7 Quality Management228
8 Conclusions231
9 Acknowledgements231
10 References231
Chapter 13 Deconsolidation and Reconsolidation of Thermoplastic Composites During Processing233
1 Introduction233
2 Experimental Observations235
2.1 Void Growth235
2.2 Migration of Voids236
2.3 Squeezed Flow of Resin During Reconsolidation237
3 Mechanistic Model of the Void Growth238
3.1 Discussion of the Mechanism238
3.2 Void-Growth Model241
3.3 Theoretical Predictions244
4 Thermal/Mechanistic Models of Migration of Voids246
4.1 Discussion of Mechanisms246
4.2 Thermal Analysis246
4.3 Void Closure249
4.4 Squeezed Creep Flow of Resin251
5 Conclusions253
6 Acknowledgement253
7 References253
Chapter 14 Long Fiber-Reinforced Thermoplastic Composites in Automotive Applications255
1 Introduction255
2 Long Glass Fiber-Reinforced Polypropylene with Mineral Fillers257
3 Long Fiber-Reinforced Polyamide 66 with Minimized Water Absorption259
4 Long Fiber-Reinforced Thermoplastic Styrene Resins for Car Interior Applications259
5 Conclusions261
6 References261
Part Ⅳ Mechanical Performance of Macrocomposites263
Chapter 15 Deformation Mechanisms in Knitted Fabric Composites265
1 Introduction265
2 Knitted Fabrics267
3 Material Characterization and Deformation Behavior268
3.1 Raw Materials268
3.2 Material Characterization268
3.2.1 Tensile Testing268
3.2.2 V-Bending268
3.2.3 Dome Forming269
3.2.4 Cup Forming269
4 Experimental Results and Grid Strain Analysis269
4.1 Tensile Testing269
4.2 V-bending270
4.3 Dome Forming271
4.4 Cup Forming273
5 Textile Composite Deformation Mechanisms274
5.1 Prepreg Flow Mechanisms274
5.2 Macro-Level Fabric Deformation Modes274
5.3 Micro-Level Fabric Deformation Modes275
5.4 Textile Fabric Force-Displacement Curve276
5.5 Experimental Force-Displacement Curves278
6 Modeling the Manufacture of the Reinforcement Architecture278
6.1 Model Set-Up279
6.2 Model Input:Knitting Machine Parameters280
6.3 Model Input:Material Property Parameters280
6.4 Model Input:Non-Physical Parameters282
6.5 Simulating the Mechanics of the Knitting Process283
7 Concluding Remarks284
8 Acknowledgements286
9 References286
Chapter 16 Impact Damage in Composite Laminates289
1 Introduction289
2 Deformation and Energy Release Rate of Axisymmetric Plates with Multiple Delaminations291
2.1 Axisymmetric Plate with Multiple Delaminations of the Same Size291
2.2 A Delamination is Larger or Smaller than the Rest293
2.3 Effect of geometrical nonlinearity295
2.4 Finite Element Analysis296
2.5 Some Derived Relationships297
3 Effect of the Stacking Sequence300
4 Simulation of Delamination Growth in Composite Laminates304
5 Conclusion305
6 References306
Chapter 17 Discontinuous Basalt Fiber-Reinforced Hybrid Composites309
1 Introduction309
2 Basalt Fibers310
2.1 Characteristics,Applications310
2.2 Production and Properties of Melt-Blown Basalt Fibers313
3 Hybrid Composites314
3.1 Concept and Realization314
3.2 Property Prediction316
3.3 Applications317
4 Thermoplastic Hybrid Composites317
4.1 Polypropylene with Hybrid Reinforcement Containing Basalt Fibers317
4.2 Basalt Fiber-Reinforced Polymer Blends319
5 Thermoset Hybrid Composites321
5.1 Basalt Fiber Mat-Reinforced Hybrid Thermosets321
5.2 Hybrid Fiber Mat-Reinforced Hybrid Thermosets323
6 Conclusions and Outlook324
7 Acknowledgement325
8 References325
Chapter 18 Accelerated Testing Methodology for Polymer Composite Durability329
1 Introduction329
2 Prediction Procedure of Fatigue Strength330
3 Some Experimental Details and Relationships Obtained330
3.1 Experimental Procedure330
3.2 Failure Mechanism331
3.3 Master Curve for the CSR Strength333
3.4 Master Curve for Creep Strength334
3.5 Master Curve for the Fatigue Strength at Zero Stress Ratio335
3.6 Prediction of Fatigue Strength for Arbitrary Stress Ratios337
4 Applicability of the Prediction Method338
5 Conclusion339
6 References340
Contributing Authors343
List of Acknowledgements357
Author Index361
Subject Index363