图书介绍

Introduction to Linear Algebra (第五版)PDF|Epub|txt|kindle电子书版本网盘下载

Introduction to Linear Algebra (第五版)
  • [美]李 W.约翰逊(Lee W.Johnson) R.迪安 里斯(R.Dean Riess) 吉米 T.阿诺德(Jimmy T.Amold)著 著
  • 出版社: 机械工业出版社
  • ISBN:
  • 出版时间:2003
  • 标注页数:555页
  • 文件大小:87MB
  • 文件页数:615页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Introduction to Linear Algebra (第五版)PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.MATRICES AND SYSTEMS OF LINEAR EQUATIONS1

1.1 Introduction to Matrices and Systems of Linear Equations2

1.2 Echelon Form and Gauss-Jordan Elimination14

1.3 Consistent Systems of Linear Equations28

1.4 Applications(Optional)39

1.5 Matrix Operations46

1.6 Algebraic Properties of Matrix Operations61

1.7 Linear Independence and Nonsingular Matrices71

1.8 Data Fitting, Numerical Integration, and Numerical Differentiation (Optional)80

1.9 Matrix Inverses and Their Properties92

2.VECTORS IN 2-SPACE AND 3-SPACE113

2.1 Vectors in the Plane114

2.2 Vectors in Space128

2.3 The Dot Product and the Cross Product135

2.4 Lines and Planes in Space148

3.THE VECTOR SPACE Rn163

3.1 Introduction164

3.2 Vector Space Properties of Rn167

3.3 Examples of Subspaces176

3.4 Bases for Subspaces188

3.5 Dimension202

3.6 Orthogonal Bases for Subspaces214

3.7 Linear Transformations from Rn to Rm225

3.8 Least-Squares Solutions to Inconsistent Systems,with Applications to Data Fitting243

3.9 Theory and Practice of Least Squares255

4.THE EIGENVALUE PROBLEM275

4.1 The Eigenvalue Problem for (2×2) Matrices276

4.2 Determinants and the Eigenvalue Problem280

4.3 Elementary Operations and Determinants (Optional)290

4.4 Eigenvalues and the Characteristic Polynomial298

4.5 Eigenvectorsand Eigenspaces307

4.6 Complex Eigenvalues and Eigenvectors315

4.7 Similarity Transformations and Diagonalization325

4.8 Difference Equations; Markov Chains; Systems of Differential Equations (Optional)338

5.VECTOR SPACES AND LINEAR TRANSFORMATIONS357

5.1 Introduction358

5.2 Vector Spaces360

5.3 Subspaces368

5.4 Linear Independence, Bases, and Coordinates375

5.5 Dimension388

5.6 Inner-Product Spaces, Orthogonal Bases, and Projections (Optional)392

5.7 Linear Transformations403

5.8 Operations with Linear Transformations411

5.9 Matrix Representations for Linear Transformations419

5.10 Change of Basis and Diagonalization431

6.DETERMINANTS447

6.1 Introduction448

6.2 Cofactor Expansions of Determinants448

6.3 Elementa Operations and Determinants455

6.4 Cramer's Rule465

6.5 Applications of Determinants:Inverses and Wronksians471

7.EIGENVALUES AND APPLICATIONS483

7.1 Quadratic Forms484

7.2 Systems of Differential Equations493

7.3 Transformation to Hessenberg Form502

7.4 Eigenvalues of Hessenberg Matrices510

7.5 Householder Transformations519

7.6 The QR Factorization and Least-Squares Solutions531

7.7 Matrix Polynomials and the Cayley-Hamilton Theorem540

7.8 Generalized Eigenvectors and Solutions of Systemsof Differential Equations546

热门推荐