图书介绍
不等式 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (英)加林著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510042829
- 出版时间:2012
- 标注页数:335页
- 文件大小:67MB
- 文件页数:346页
- 主题词:不等式-英文
PDF下载
下载说明
不等式 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Measure and integral4
1.1 Measure4
1.2 Measurable functions7
1.3 Integration9
1.4 Notes and remarks12
2 The Cauchy-Schwarz inequality13
2.1 Cauchy's inequality13
2.2 Inner-product spaces14
2.3 The Cauchy-Schwarz inequality15
2.4 Notes and remarks17
3 The AM-GM inequality19
3.1 The AM GM inequality19
3.2 Applications21
3.3 Notes and remarks23
4 Convexity,and Jensen's inequality24
4.1 Convex sets and convex functions24
4.2 Convex functions on an interval26
4.3 Directional derivatives and sublinear functionals29
4.4 The Hahn-Banach theorem31
4.5 Normed spaces,Banach spaces and Hilbert space34
4.6 The Hahn-Banach theorem for normed spaces36
4.7 Barycentres and weak integrals39
4.8 Notes and remarks40
5 The Lp spaces45
5.1 Lp spaces,and Minkowski's inequality45
5.2 The Lebesgue decomposition theorem47
5.3 The reverse Minkowski inequality49
5.4 H?lder's inequality50
5.5 The inequalities of Liapounov and Littlewood54
5.6 Duality55
5.7 The Loomis-Whitney inequality57
5.8 A Sobolev inequality60
5.9 Schur's theorem and Schur's test62
5.10 Hilbert's absolute inequality65
5.11 Notes and remarks67
6 Banach function spaces70
6.1 Banach function spaces70
6.2 Function space duality72
6.3 Orlicz spaces73
6.4 Notes and remarks76
7 Rearrangements78
7.1 Decreasing rearrangements78
7.2 Rearrangement-invariant Banach function spaces80
7.3 Muirhead's maximal function81
7.4 Majorization84
7.5 Calderón's interpolation theorem and its converse88
7.6 Symmetric Banach sequence spaces91
7.7 The method of transference93
7.8 Finite doubly stochastic matrices97
7.9 Schur convexity98
7.10 Notes and remarks100
8 Maximal inequalities103
8.1 The Hardy-Riesz inequality(1<p<∞)103
8.2 The Hardy-Riesz inequality(p=1)105
8.3 Related inequalities106
8.4 Strong type and weak type108
8.5 Riesz weak type111
8.6 Hardy,Littlewood,and a batsman's averages112
8.7 Riesz's sunrise lemma114
8.8 Differentiation almost everywhere117
8.9 Maximal operators in higher dimensions118
8.10 The Lebesgue density theorem121
8.11 Convolution kernels121
8.12 Hedberg's inequality125
8.13 Martingales127
8.14 Doob's inequality130
8.15 The martingale convergence theorem130
8.16 Notes and remarks133
9 Complex interpolation135
9.1 Hadamard's three lines inequality135
9.2 Compatible couples and intermediate spaces136
9.3 The Riesz—Thorin interpolation theorem138
9.4 Young's inequality140
9.5 The Hausdorff—Young inequality141
9.6 Fourier type143
9.7 The generalized Clarkson inequalities145
9.8 Uniform convexity147
9.9 Notes and remarks150
10 Real interpolation154
10.1 The Marcinkiewicz interpolation theorem:Ⅰ154
10.2 Lorentz spaces156
10.3 Hardy's inequality158
10.4 The scale of Lorentz spaces159
10.5 The Marcinkiewicz interpolation theorem:Ⅱ162
10.6 Notes and remarks165
11 The Hilbert transform,and Hilbert's inequalities167
11.1 The conjugate Poisson kernel167
11.2 The Hilbert transform on L2(R)168
11.3 The Hilbert transform on Lp(R)for 1<p<∞170
11.4 Hilbert's inequality for sequences174
11.5 The Hilbert transform on T175
11.6 Multipliers179
11.7 Singular integral operators180
11.8 Singular integral operators on Lp(Rd)for 1≤p<∞183
11.9 Notes and remarks185
12 Khintchine's inequality187
12.1 The contraction principle187
12.2 The reflection principle,and Lévy's inequalities189
12.3 Khintchine's inequality192
12.4 The law of the iterated logarithm194
12.5 Strongly embedded subspaces196
12.6 Stable random variables198
12.7 Sub-Gaussian random variables199
12.8 Kahane's theorem and Kahane's inequality201
12.9 Notes and remarks204
13 Hypercontractive and logarithmic Sobolev inequalities206
13.1 Bonami's inequality206
13.2 Kahane's inequality revisited210
13.3 The theorem of Latala and Oleszkiewicz211
13.4 The logarithmic Sobolev inequality on Dd 2213
13.5 Gaussian measure and the Hermite polynomials216
13.6 The central limit theorem219
13.7 The Gaussian hypercontractive inequality221
13.8 Correlated Gaussian random variables223
13.9 The Gaussian logarithmic Sobolev inequality225
13.10 The logarithmic Sobolev inequality in higher dimensions227
13.11 Beckner's inequality229
13.12 The Babenko-Beckner inequality230
13.13 Notes and remarks232
14 Hadamard's inequality233
14.1 Hadamard's inequality233
14.2 Hadamard numbers234
14.3 Error-correcting codes237
14.4 Note and remark238
15 Hilbert space operator inequalities239
15.1 Jordan normal form239
15.2 Riesz operators240
15.3 Related operators241
15.4 Compact operators242
15.5 Positive compact operators243
15.6 Compact operators between Hilbert spaces245
15.7 Singular numbers,and the Rayleigh-Ritz minimax formula246
15.8 Weyl's inequality and Horn's inequality247
15.9 Ky Fan's inequality250
15.10 Operator ideals251
15.11 The Hilbert-Schmidt class253
15.12 The trace class256
15.13 Lidskii's trace formula257
15.14 Operator ideal duality260
15.15 Notes and remarks261
16 Summing operators263
16.1 Unconditional convergence263
16.2 Absolutely summing operators265
16.3 (p,q)-summing operators266
16.4 Examples of p-summing operators269
16.5 (p,2)-summing operators between Hilbert spaces271
16.6 Positive operators on L1273
16.7 Mercer's theorem274
16.8 p-summing operators between Hilbert spaces(1≤p≤2)276
16.9 Pietsch's domination theorem277
16.10 Pietsch's factorization theorem279
16.11 p-summing operators between Hilbert spaces(2≤p ≤∞)281
16.12 The Dvoretzky-Rogers theorem282
16.13 Operators that factor through a Hilbert space284
16.14 Notes and remarks287
17 Approximation numbers and eigenvalues289
17.1 The approximation,Gelfand and Weyl numbers289
17.2 Subadditive and submultiplicative properties291
17.3 Pietsch's inequality294
17.4 Eigenvalues of p-summing and(p,2)-summing endomorphisms296
17.5 Notes and remarks301
18 Grothendieck's inequality,type and cotype302
18.1 Littlewood's 4/3 inequality302
18.2 Grothendieck's inequality304
18.3 Grothendieck's theorem306
18.4 Another proof,using Paley's inequality307
18.5 The little Grothendieck theorem310
18.6 Type and cotype312
18.7 Gaussian type and cotype314
18.8 Type and cotype of Lp spaces316
18.9 The little Grothendieck theorem revisited318
18.10 More on cotype320
18.11 Notes and remarks323