图书介绍

复分析 第2版PDF|Epub|txt|kindle电子书版本网盘下载

复分析 第2版
  • (德)费莱塔格著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787510077838
  • 出版时间:2014
  • 标注页数:533页
  • 文件大小:52MB
  • 文件页数:540页
  • 主题词:复分析-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

复分析 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ Differential Calculus in the Complex Plane C9

Ⅰ.1 Complex Numbers9

Ⅰ.2 Convergent Sequences and Series24

Ⅰ.3 Continuity36

Ⅰ.4 Complex Derivatives42

Ⅰ.5 The CAUCHY-RIEMANN Differential Equations47

Ⅱ Integral Calculus in the Complex Plane C69

Ⅱ.1 Complex Line Integrals70

Ⅱ.2 The CAUCHY Integral Theorem77

Ⅱ.3 The CAUCHY Integral Formulas92

Ⅲ Sequences and Series of Analytic Functions,the Residue Theorem103

Ⅲ.1 Uniform Approximation104

Ⅲ.2 Power Series109

Ⅲ.3 Mapping Properties of Analytic Functions124

Ⅲ.4 Singularities of Analytic Functions133

Ⅲ.5 LAURENT Decomposition142

A Appendix to Ⅲ.4 and Ⅲ.5155

Ⅲ.6 The Residue Theorem162

Ⅲ.7 Applications of the Residue Theorem170

Ⅳ Construction of Analytic Functions191

Ⅳ.1 The Gamma Function192

Ⅳ.2 The WEIERSTRASS Product Formula210

Ⅳ.3 The MITTAG-LEFFLER Partial Fraction Decomposition218

Ⅳ.4 The RIEMANN Mapping Theorem223

A Appendix:The Homotopieal Version of the CAUCHY Integral Theorem233

B Appendix:A Homological Version of the CAUCHY Integral Theorem239

C Appendix:Characterizations of Elementary Domains244

Ⅴ Elliptic Functions251

Ⅴ.1 LIOUVILLE's Theorems252

A Appendix to the Definition of the Period Lattice259

Ⅴ.2 The WEIERSTRASS ?-function261

Ⅴ.3 The Field of Elliptic Functions267

A Appendix to Sect.Ⅴ.3:The Torus as an Algebraic Curve271

Ⅴ.4 The Addition Theorem278

Ⅴ.5 Elliptic Integrals284

Ⅴ.6 ABEL's Theorem291

Ⅴ.7 The Elliptic Modular Group301

Ⅴ.8 The Modular Function j309

Ⅵ Elliptic Modular Forms317

Ⅵ.1 The Modular Group and Its Fundamental Region318

Ⅵ.2 The k/12-formula and the Injectivity of the j-function326

Ⅵ.3 The Algebra of Modular Forms334

Ⅵ.4 Modular Forms and Theta Series338

Ⅵ.5 Modular Forms for Congruence Groups352

A Appendix to Ⅵ.5:The Theta Group363

Ⅵ.6 A Ring of Theta Functions370

Ⅶ Analytic Number Theory381

Ⅶ.1 Sums of Four and Eight Squares382

Ⅶ.2 DIRICHLET Series399

Ⅶ.3 DIRICHLET Series with Functional Equations408

Ⅶ.4 The RIEMANN ζ-function and Prime Numbers421

Ⅶ.5 The Analytic Continuation of the ζ-function429

Ⅶ.6 A TAUBERian Theorem436

Ⅷ Solutions to the Exercises449

Ⅷ.1 Solutions to the Exercises of Chapter Ⅰ449

Ⅷ.2 Solutions to the Exercises of Chapter Ⅱ459

Ⅷ.3 Solutions to the Exercises of Chapter Ⅲ464

Ⅷ.4 Solutions to the Exercises of Chapter Ⅳ475

Ⅷ.5 Solutions to the Exercises of Chapter Ⅴ482

Ⅷ.6 Solutions to the Exercises of Chapter Ⅵ490

Ⅷ.7 Solutions to the Exercises of Chapter Ⅶ498

References509

Symbolic Notations519

热门推荐