图书介绍
场论、重正化群和临界现象 第3版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (以)阿密特著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510087707
- 出版时间:2015
- 标注页数:543页
- 文件大小:78MB
- 文件页数:565页
- 主题词:场论-研究-英文
PDF下载
下载说明
场论、重正化群和临界现象 第3版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ BASIC IDEAS AND TECHNIQUES3
1 Pertinent concepts and ideas in the theory of critical phenomena3
1-1 Description of critical phenomena3
1-2 Scaling and homogeneity5
1-3 Comparison of various results for critical exponents6
1-4 Universality—dimensionality,symmetry8
Exercises9
2 Formulation of the problem of phase transitions in terms of functional integrals11
2-1 Introduction11
2-2 Construction of the Lagrangian12
2-2-1 The real scalar field12
2-2-2 Complex field12
2-2-3 A hypercubic n-vector model13
2-2-4 Two coupled fluctuating fields14
2-3 The parameters appearing in?14
2-4 The partition function,or the generating functional15
2-5 Representation of the Ising model in terms of functional integrals18
2-5-1 Definition of the model and its thermodynamics18
2-5-2 The Gaussian transformation21
2-5-3 The free part22
2-5-4 Some properties of the free theory—a free Euclidean field theory in less than four dimensions26
2-6 Correlation functions including composite operators28
Exercises30
3 Functional integrals in quantum field theory33
3-1 Introduction33
3-2 Functional integrals for a quantum-mechanical system with one degree of freedom34
3-2-1 Schwinger's transformation function34
3-2-2 Matrix elements—Green functions37
3-2-3 The generating functional38
3-2-4 Analytic continuation in time—the Euclidean theory40
3-3 Functional integrals for the scalar boson field theory41
3-3-1 Introduction41
3-3-2 The generating functional for Green functions43
3-3-3 The generating functional as a functional integral44
3-3-4 The S-matrix expressed in terms of the generating functional47
Exercises50
4 Perturbation theory and Feynman graphs53
4-1 Introduction53
4-2 Perturbation expansion in coordinate space54
4-3 The cancellation of vacuum graphs60
4-4 Rules for the computation of graphs60
4-5 More general cases63
4-5-1 The M-vector theory63
4-5-2 Comments on fields with higher spin67
4-6 Diagrammatic expansion in momentum space68
4-7 Perturbation expansion of Green functions withZ composite operators72
4-7-1 In coordinate space72
4-7-2 In momentum space74
4-7-3 Insertion at zero momentum76
Exercises77
5 Vertex functions and symmetry breaking80
5-1 Introduction80
5-2 Connected Green functions and their generating functional82
5-3 The mass operator85
5-4 The Legendre transform and vertex functions86
5-5 The generating functional and the potential91
5-6 Ward-Takahashi identities and Goldstone's theorem94
5-7 Vertex parts for Green functions with composite operators96
Exercises101
6 Expansions in the number of loops and in the number of components103
6-1 Introduction103
6-2 The expansion in the number of loops as a power series104
6-3 The tree(Landau-Ginzburg)approximation105
6-4 The one-loop approximation and the Ginzburg criterion109
6-5 Mass and coupling constant renormalization in the one-loop approximation112
6-6 Composite field renormalization116
6-7 Renormalization of the field at the two-loop level117
6-8 The 0(M)-symmetric theory in the limit of large M126
6-8-1 General remarks126
6-8-2 The origin of the M-dependence of the coupling constant127
6-8-3 Faithful representation of graphs and the dominant terms in Γ(4)128
6-8-4 Γ(2)in the infinite M limit130
6-8-5 Renormalization133
6-8-6 Broken symmetry134
Appendix 6-1 The method of steepest descent and the loop expansion137
Exercises142
7 Renormalization147
7-1 Introduction147
7-2 Some considerations concerning engineering dimensions148
7-3 Power counting and primitive divergences151
7-4 Renormalization of a cutoff φ4 theory157
7-5 Normalization conditions for massive and massless theories159
7-6 Renormalization constants for a massless theory to order two loops161
7-7 Renormalization away from the critical point164
7-8 Counterterms167
7-9 Relevant and irrelevant operators169
7-10 Renormalization of a φ4 theory with an 0(M)symmetry171
7-11 Ward identities and renormalization174
7-12 Iterative construction of counterterms179
Exercises185
8 The renormalization group and scaling in the critical region189
8-1 Introduction189
8-2 The renormalization group for the critical(massless)theory190
8-3 Regularization by continuation in the number of dimensions195
8-4 Massless theory below four dimensions—the emergence of ∈196
8-5 The solution of the renormalization group equation197
8-6 Fixed points,scaling,and anomalous dimensions199
8-7 The approach to the fixed point—asymptotic freedom201
8-8 Renormalization group equation above Tc—identification of v205
8-9 Below the critical temperature—the scaling form of the equation of state208
8-10 The specific heat—renormalization group equation for an additively renormalized vertex210
8-11 The Callan-Symanzik equations212
8-12 Renormalization group equations for the bare theory214
8-13 Renormalization group equations and scaling in the infinite M limit217
Appendix 8-1 General formulas for calculating Feynman integrals222
Exercises223
9 The computation of the critical exponents228
9-1 Introduction228
9-2 The symbolic calculation of the renormalization constants and Wilson functions230
9-3 The ∈expansion of the critical exponents233
9-4 The nature of the fixed points—universality237
9-5 Scale invariance at finite cutoff238
9-6 At the critical dimension—asymptotic infrared freedom240
9-7 ∈expansion for the Callan-Symanzik method243
9-8 ∈expansion of the renormalization group equations for the bare functions247
9-9 Dimensional regularization and critical phenomena248
9-10 Renormalization by minimal subtraction of dimensional poles250
9-11 The calculation of exponents in minimal subtraction255
Appendix 9-1 Calculation of some integrals with cutoff257
9-2 One-loop integrals in dimensional regularization260
9-3 Two-loop integrals in dimensional regularization263
Exercises266
PART Ⅱ FURTHER APPLICATIONS AND DEVELOPMENTS273
1 Introduction273
2 Beyond leading scaling275
2-1 Corrections to scaling in aφ4 theory275
2-2 Finite-size scaling277
2-3 Anomalous dimensions of high composite operators280
2-4 Corrections due to irrelevant operators288
2-5 Next-to-leading terms in the scaling region293
2-6 The operator product expansion295
2-7 Computation of next-to-leading terms in ∈-expansion297
Appendix 2-1 Renormalized equations of motion300
Exercises306
3 Universality revisited310
3-1 Renormalization scheme independence of critical exponents310
3-2 The universal form of the equation of state311
3-3 The equation of state to order ∈314
3-4 Two scale factor universality—universal ratios of amplitudes316
Exercises320
4 Critical behavior with several couplings323
4-1 Introduction323
4-2 More than one coupling constant—cubic anisotropy324
4-3 Runaway trajectories328
4-4 First order transitions induced by fluctuations:the Coleman-Weinberg mechanism330
4-5 Geometrical description of the Coleman-Weinberg phenomenon337
Exercises339
5 Crossover phenomena342
5-1 Introduction342
5-2 Crossover in magnetic systems interacting quadratically and the Harris criterion for relevance of random dilution343
5-3 The crossover exponent at a bicritical point:scale invariance with quadratic symmetry breaking346
5-4 The crossover function at a bicritical point:a case study of renormalization group analysis in the presence of two lengths350
Exercises361
6 Critical phenomena near two dimensions364
6-1 An alternative field theory for the Heisenberg model—the low temperature phase364
6-2 Perturbation theory for the non-linear sigma model368
6-2-1 The free propagator and infrared regularization369
6-2-2 Disposing of the measure369
6-2-3 The interactions370
6-2-4 The expansion of Γ(2)α370
6-3 Renormalization group treatment of the non-linear sigma model372
6-4 Scaling behavior and critical exponents376
Appendix 6-1 Renormalization of the non-linear sigma model378
Exercises380
PART Ⅲ NONPERTURBATIVE AND NUMERICAL METHODS385
1 Real space methods385
1-1 Introduction385
1-1-1 Lattice models386
1-1-2 Brief visit to high temperature expansion390
1-1-3 High order expansions and critical behavior394
1-2 Real space renormalization group395
1-2-1 The 1-d Ising model400
1-2-2 2-d Ising model403
1-2-3 General case409
1-3 At and around a fixed point414
1-3-1 Scaling of the correlation functions418
1-3-2 Renormalized trajectory424
1-4 The large M model427
1-4-1 Path integral and saddle point428
1-4-2 The propagator430
1-4-3 Factorization431
1-4-4 Gap equation433
1-4-5 The exponent v434
1-4-6 Example of real-space RG-transformation436
Exercises439
2 Finite size scaling446
2-1 Introduction446
2-1-1 Geometry and boundary conditions449
2-1-2 The finite size scaling ansatz452
2-2 The RG derivation of finite size scaling456
2-2-1 Logarithmic specific heat460
2-2-2 Order parameter probability461
2-2-3 Corrections to scaling464
2-2-4 First-order phase transitions469
2-3 Applications of FSS470
2-3-1 Finite lattice correlation length471
2-3-2 Extrapolations to infinite volume474
2-3-3 Working at the critical point476
Exercises480
3 Monte Carlo methods.Numerical field theory486
3-1 Introduction486
3-1-1 Motivations486
3-1-2 Static Monte Carlo methods:first example487
3-1-3 Problems with uniform sampling490
3-2 Dynamic Monte Carlo492
3-2-1 Methods for the Ising model496
3-2-2 Methods for the O(3)non-linear σ-model497
3-3 Data analysis499
3-3-1 General considerations499
3-3-2 Practical recipes503
3-4 Cluster methods509
3-4-1 Discrete spins510
3-4-2 Performance513
3-4-3 Continuous spins514
3-4-4 Final remark515
Exercises516
Appendix A Sample Programs521
A-1 Static Monte Carlo Integration521
A-2 Simulation of 2-D Ising Model521
A-3 Autocorrelation Analysis521
A-4 Data Analysis521
Author Index521
Subject Index527