图书介绍
LAPACK95用户指南 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![LAPACK95用户指南 英文版](https://www.shukui.net/cover/3/30760134.jpg)
- (美)巴克著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302245032
- 出版时间:2011
- 标注页数:261页
- 文件大小:9MB
- 文件页数:275页
- 主题词:线性代数-计算机辅助计算-应用软件-英文
PDF下载
下载说明
LAPACK95用户指南 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ GENERAL INFORMATION1
1 Essentials3
1.1 LAPACK953
1.2 Problems that LAPACK95 can Solve3
1.3 Computers for which LAPACK95 is Suitable4
1.4 LAPACK and the BLAS4
1.5 Availability and Installation of Software4
1.5.1 LAPACK954
1.5.1.1 Incorporating Machine Dependencies5
1.5.2 LAPACK6
1.5.3 BLAS7
1.5.4 Installation Debugging Hints8
1.5.5 Mirror Repositories of netlib8
1.5.6 Availability of Software via CD-ROM8
1.6 Support9
1.7 Commercial Use9
2 Contents of LAPACK9511
2.1 Structure of LAPACK9511
2.1.1 Levels of Routines11
2.1.2 Data Types and Precision11
2.1.3 Naming Scheme12
2.2 Driver Routines13
2.2.1 Linear Equations13
2.2.2 Linear Least Squares(LLS)Problems13
2.2.3 Generalized Linear Least Squares(LSE and GLM)Problems15
2.2.4 Standard Eigenvalue and Singular Value Problems16
2.2.4.1 Symmetric Eigenproblems(SEP)16
2.2.4.2 Nonsymmetric Eigenproblems(NEP)17
2.2.4.3 Singular Value Decomposition(SVD)18
2.2.5 Generalized Eigenvalue and Singular Value Problems18
2.2.5.1 Generalized Symmetric Definite Eigenproblems(GSEP)18
2.2.5.2 Generalized Nonsymmetric Eigenproblems(GNEP)20
2.2.5.3 Generalized Singular Value Decomposition(GSVD)21
3 Documentation Design and Program Examples25
3.1 Design of the LAPACK95 Driver Interface25
3.2 Design and Documentation of Driver Argument Lists26
3.2.1 Structure of the Documentation26
3.2.2 Order of Arguments27
3.2.3 Argument Descriptions27
3.2.4 Optional Arguments28
3.2.5 Array Arguments28
3.3 Error Handling28
3.4 Matrix Storage Schemes30
3.5 Design of Interfaces for Computational Routines30
3.6 How to call an LAPACK95 Routine31
3.7 Code for One Version of LA_SYEV33
3.8 LAPACK and LAPACK95 Interface Module Blocks35
3.8.1 F77_LAPACK Generic Interface Blocks35
3.8.1.1 LA_SYEV/LA_HEEV35
3.8.1.2 LA_GESV Multiple RHS Case37
3.8.1.3 LA_GESV Single RHS Case37
3.8.2 F95_LAPACK Generic Interface Blocks38
3.8.2.1 LA_SYEV/LA_HEEV38
3.8.2.2 LA_GESV39
3.8.3 LA_LAMCH Interfaces40
4 Performance and Troubleshooting41
4.1 Performance of LAPACK9541
4.1.1 Performance Issues41
4.1.2 Performance Tables41
4.2 Accuracy and Stability47
4.3 Errors and Poor Performance47
Ⅱ DRIVER ROUTINES49
5 Driver Routines for Linear Systems51
5.1 General Linear Systems51
5.1.1 LA_GESV51
5.1.2 LA_GESVX54
5.1.3 LA_GBSV57
5.1.4 LA_GBSVX61
5.1.5 LA_GTSV65
5.1.6 LA_GTSVX67
5.2 Symmetric/Hermitian Positive Definite Linear Systems70
5.2.1 LA_POSV70
5.2.2 LA_POSVX73
5.2.3 LA_PPSV77
5.2.4 LA_PPSVX79
5.2.5 LA_PBSV82
5.2.6 LA_PBSVX85
5.2.7 LA_PTSV89
5.2.8 LA_PTSVX91
5.3 Symmetric Indefinite Linear Systems93
5.3.1 LA_SYSV/LA_HESV93
5.3.2 LA_SYSVX/LA_HESVX98
5.3.3 LA_SPSV/LA_HPSV101
5.3.4 LA_SPSVX/LA_HPSVX104
6 Driver Routines for Least Squares Problems107
6.1 Linear Least Squares Problems107
6.1.1 LA_GELS107
6.1.2 LA_GELSY110
6.1.3 LA_GELSS/LA_GELSD112
6.2 Generalized Linear Least Squares Problems114
6.2.1 LA_GGLSE114
6.2.2 LA_GGGLM116
7 Driver Routines for Standard Eigenvalue Problems119
7.1 Standard Symmetric Eigenvalue Problems119
7.1.1 LA_SYEV/LA_HEEV/LA_SYEVD/LA_HEEVD119
7.1.2 LA_SYEVX/LA_HEEVX122
7.1.3 LA_SYEVR/LA_HEEVR124
7.1.4 LA_SPEV/LA_HPEV/LA_SPEVD/LA_HPEVD126
7.1.5 LA_SPEVX/LA_HPEVX130
7.1.6 LA_SBEV/LA_HBEV/LA_SBEVD/LA_HBEVD132
7.1.7 LA_SBEVX/LA_HBEVX135
7.1.8 LA_STEV/LA_STEVD138
7.1.9 LA_STEVX140
7.1.10 LA_STEVR142
7.2 Standard Nonsymmetric Eigenvalue Problems145
7.2.1 LA_GEES145
7.2.2 LA_GEESX149
7.2.3 LA_GEEV152
7.2.4 LA_GEEVX156
8 Driver Routines for Generalized Eigenvalue Problems159
8.1 Generalized Symmetric Eigenvalue Problems159
8.1.1 LA_SYGV/LA_SYGVD/LA_HEGV/LA_HEGVD159
8.1.2 LA_SYGVX/LA_HEGVX163
8.1.3 LA_SPGV/LA_SPGVD/LA_HPGV/LA_HPGVD166
8.1.4 LA_SPGVX/LA_HPGVX171
8.1.5 LA_SBGV/LA_SBGVD/LA_HBGV/LA_HBGVD174
8.1.6 LA_SBGVX/LA_HBGVX178
8.2 Generalized Nonsymmetric Eigenvalue Problems181
8.2.1 LA_GGES181
8.2.2 LA_GGESX187
8.2.3 LA_GGEV190
8.2.4 LA_GGEVX195
9 Driver Routines for Singular Value Problems201
9.1 Standard Singular Value Problems201
9.1.1 LA_GESVD/LA_GESDD201
9.2 Generalized Singular Value Problems204
9.2.1 LA_GGSVD204
Ⅲ COMPUTATIONAL ROUTINES211
10 Computational Routines213
10.1 Computational Routines for Linear Equations213
10.1.1 General Linear Systems213
10.1.2 Symmetric/Hermitian Positive Definite Linear Systems216
10.1.3 Symmetric Indefinite Linear Systems221
10.1.4 Triangular Linear Systems223
10.2 Computational Routines for Orthogonal Factorizations226
10.3 Computational Routines for the Symmetric Eigenproblem229
10.4 Computational Routines for the Nonsymmetric eigenproblem231
10.5 Computational Routines for the Singular Value Decomposition234
10.6 Computational Routines for the Generalized Symmetric Definite Eigenproblem236
10.7 Computational Routines for the Generalized Nonsymmetric Eigenproblem237
10.8 Computational Routines for the Generalized Singular Value Decomposition239
Bibliography239
Index by Keyword245
Index by Routine Name256
List of Tables6
1.1 Machine constants returned by LA_LAMCH6
2.1 Matrix types in the LAPACK naming scheme12
2.2 Driver routines for linear equations14
2.3 Driver routines for linear least squares problems15
2.4 Driver routines for generalized linear least squares problems16
2.5 Driver routines for standard eigenvalue and singular value problems19
2.6 Driver routines for generalized eigenvalue and singular value problems23
4.1 Computer used for running the performance timing42
4.2 Floating point coefficient of operation counts for LAPACK drivers for n×n matrices(see also Table 3.13 of[1]).The number of operations is α×n343
4.3 Performance of LA_GESV in megaflops;n=100 and 100043
4.4 Performance of LA_GEEV in megaflops(eigenvalues only);n=100 and 100044
4.5 Performance of LA_GEEV in megaflops(eigenvalues and right eigenvectors);n=100 and 100044
4.6 Performance of LA_GESVD in megaflops(singular values and left and right singular vectors);n=100 and 100045
4.7 Performance of LA_GESDD in megaflops(singular values only);n=100 and 100045
4.8 Performance of LA_GESDD in megaflops(singular values and left and right singular vectors);n=100 and 100046
List of Figures32
3.1 Example program calling an LAPACK95 driver routine32
3.2 Example program calling an LAPACK95 computational routine33