图书介绍
随机过程用的极限定理 第2版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (法)杰克德(JacodJ.)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7510061387
- 出版时间:2013
- 标注页数:664页
- 文件大小:93MB
- 文件页数:683页
- 主题词:
PDF下载
下载说明
随机过程用的极限定理 第2版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ.The General Theory of Stochastic Processes,Semimartingales and Stochastic Integrals1
1.Stochastic Basis,Stopping Times,Optionalσ-Field,Martingales1
1a.Stochastic Basis2
1b.Stopping Times4
1c.The Optional σ-Field5
1d.The Localization Procedure8
1e.Martingales10
1f.The Discrete Case13
2.Predictable σ-Field,Predictable Times16
2a.The Predictable σ-Field16
2b.Predictable Times17
2c.Totally Inaccessible Stopping Times20
2d.Predictable Projection22
2e.The Discrete Case25
3.Increasing Processes27
3a.Basic Properties27
3b.Doob-Meyer Decomposition and Compensators of Increasing Processes32
3c.Lenglart Domination Property35
3d.The Discrete Case36
4.Semimartingales and Stochastic Integrals38
4a.Locally Square-Integrable Martingales38
4b.Decompositions of a Local Martingale40
4c.Semimartingales43
4d.Construction of the Stochastic Integral46
4e.Quadratic Variation of a Semimartingale and Ito's Formula51
4f.Doléans-Dade Exponential Formula58
4g.The Discrete Case62
Chapter Ⅱ.Characteristics of Semimartingales and Processes with Independent Increments64
1.Random Measures64
1a.General Random Measures65
1b.Integer-Valued Random Measures68
1c.A Fundamental Example:Poisson Measures70
1d.Stochastic Integral with Respect to a Random Measure71
2.Characteristics of Semimartingales75
2a.Definition of the Characteristics75
2b.Integrability and Characteristics81
2c.A Canonical Representation for Semimartingales84
2d.Characteristics and Exponential Formula85
3.Some Examples91
3a.The Discrete Case91
3b.More on the Discrete Case93
3c.The"One-Point"Point Process and Empirical Processes97
4.Semimartingales with Independent Increments101
4a.Wiener Processes102
4b.Poisson Processes and Poisson Random Measures103
4c.Processes with Independent Increments and Semimartingales106
4d.Gaussian Martingales111
5.Processes with Independent Increments Which Are Not Semimartingales114
5a.The Results114
5b.The Proofs116
6.Processes with Conditionally Independent Increments124
7.Progressive Conditional Continuous PIIs128
8.Semimartingales,Stochastic Exponential and Stochastic Logarithm134
8a.More About Stochastic Exponential and Stochastic Logarithm134
8b.Multiplicative Decompositions and Exponentially Special Semimartingales138
Chapter Ⅲ.Martingale Problems and Changes of Measures142
1.Martingale Problems and Point Processes143
1a.General Martingale Problems143
1b.Martingale Problems and Random Measures144
1c.Point Processes and Multivariate Point Processes146
2.Martingale Problems and Semimartingales151
2a.Formulation of the Problem152
2b.Example:Processes with Independent Increments154
2c.Diflusion Processes and Diffusion Processes with Jumps155
2d.Local Uniqueness159
3.Absolutely Continuous Changes of Measures165
3a.The Density Process165
3b.Girsanov's Theorem for Local Martingales168
3c.Girsanoy's Theorem for Random Measures170
3d.Girsanov's Theorem for Semimartingales172
3e.The Discrete Case177
4.Representation Theorem for Martingales179
4a.Stochastic Integrals with Respect to a Multi-Dimensional Continuous Local Martingale179
4b.Projection of a Local Martingale on a Random Measure182
4c.The Representation Property185
4d.The Fundamental Representation Theorem187
5.Absolutely Continuous Change of Measures:Explicit Computation of the Density Process191
5a.All P-Martingales Have the Representation Property Relative to X192
5b.P′Has the Local Uniqueness Property196
5c.Examples200
6.Integrals of Vector-Valued Processes and σ-martingales203
6a.Stochastic Integrals with Respect to a Multi-Dimensional Locally Square-integrable Martingale204
6b.Integrals with Respect to a Multi-Dimensional Process of Locally Finite Variation206
6c.Stochastic Integrals with Respect to a Multi-Dimensional Semimartingale207
6d.Stochastic Integrals:A Predictable Criterion212
6e.∑-localization and σ-martingales214
7.Laplace Cumulant Processes and Esscher's Change of Measures219
7a.Laplace Cumulant Processes of Exponentially Special Semimartingales219
7b.Esscher Change of Measure222
Chapter Ⅳ.Hellinger Processes,Absolute Continuity and Singularity of Measures227
1.Hellinger Integrals and Hellinger Processes228
1a.Kakutani-Hellinger Distance and Hellinger Integrals228
1b.Hellinger Processes230
1c.Computation of Hellinger Processes in Terms of the Density Processes234
1d.Some Other Processes of Interest237
1e.The Discrete Case242
2.Predictable Criteria for Absolute Continuity and Singularity245
2a.Statement of the Results245
2b.The Proofs248
2c.The Discrete Case252
3.Hellinger Processes for Solutions of Martingale Problems254
3a.The General Setting255
3b.The Case Where P and P′Are Dominated by a Measure Having the Martingale Representation Property257
3c.The Case Where Local Uniqueness Holds266
4.Examples272
4a.Point Processes and Multivariate Point Processes272
4b.Generalized Diffusion Processes275
4c.Processes with Independent Increments277
Chapter Ⅴ.Contiguity,Entire Separation,Convergence in Variation284
1.Contiguity and Entire Separation284
1a.General Facts284
1b.Contiguity and Filtrations290
2.Predictable Criteria for Contiguity and Entire Separation291
2a.Statements of the Results291
2b.The Proofs294
2c.The Discrete Case301
3.Examples304
3a.Point Processes304
3b.Generalized Diffusion Processes305
3c.Processes with Independent Increments306
4.Variation Metric309
4a.Variation Metric and Hellinger Integrals310
4b.Variation Metric and Hellinger Processes312
4c.Examples:Point Processes and Multivariate Point Processes318
4d.Example:Generalized Diffusion Processes322
Chapter Ⅵ.Skorokhod Topology and Convergence of Processes324
1.The Skorokhod Topology325
1a.Introduction and Notation325
1b.The Skorokhod Topology:Definition and Main Results327
1c.Proof of Theorem 1.14329
2.Continuity for the Skorokhod Topology337
2a.Continuity Properties of some Functions337
2b.Increasing Functions and the Skorokhod Topology342
3.Weak Convergence347
3a.Weak Convergence of Probability Measures347
3b.Application to Càdlàg Processes348
4.Criteria for Tightness:The Quasi-Left Continuous Case355
4a.Aldous'Criterion for Tightness356
4b.Application to Martingales and Semimartingales358
5.Criteria for Tightness:The General Case362
5a.Criteria for Semimartingales362
5b.An Auxiliary Result365
5c.Proof of Theorem 5.17367
6.Convergence,Quadratic Variation,Stochastic Integrals376
6a.The P-UT Condition377
6b.Tightness and the P-UT Property382
6c.Convergence of Stochastic Integrals and Quadratic Variation382
6d.Some Additional Results386
Chapter Ⅶ.Convergence of Processes with Independent Increments389
1.Introduction to Functional Limit Theorems390
2.Finite-Dimensional Convergence394
2a.Convergence of Infinitely Divisible Distributions394
2b.Some Lemmas on Characteristic Functions398
2c.Convergence of Rowwise Independent Triangular Arrays402
2d.Finite-Dimensional Convergence of PII-Semimartingales to a PII Without Fixed Time of Discontinuity408
3.Functional Convergence and Characteristics413
3a.The Results414
3b.Sufficient Condition for Convergence Under2.48418
3c.Necessary Condition for Convergence418
3d.Sufficient Condition for Convergence424
4.More on the General Case428
4a.Convergence ofNon-Infinitesimal Rowwise Independent Arrays428
4b.Finite-Dimensional Convergence for General PII436
4c.Another Necessary and Sufficient Condition for Functional Convergence439
5.The Central Limit Theorem444
5a.The Lindeberg-Feller Theorem445
5b.Zolotarev's Type Theorems446
5c.Finite-Dimensional Convergence of PII's to a Gaussian Martingale450
5d.Functional Convergence of PII's to a Gaussian Martingale452
Chapter Ⅷ.Convergence to a Process with Independent Increments456
1.Finite-Dimensional Convergence,a General Theorem456
1a.Description of the Setting for This Chapter456
1b.The Basic Theorem457
1c.Remarks and Comments459
2.Convergence to a PII Without Fixed Time of Discontinuity460
2a.Finite-Dimensional Convergence461
2b.Functional Convergence464
2c.Application to Triangular Arrays465
2d.Other Conditions for Convergence467
3.Applications469
3a.Central Limit Theorem:Necessary and Sufficient Conditions470
3b.Central Limit Theorem:The Martingale Case473
3c.Central Limit Theorem for Triangular Arrays477
3d.Convergence of Point Processes478
3e.Normed Sums of I.I.D.Semimartingales481
3f.Limit Theorems for Functionals of Markov Processes486
3g.Limit Theorems for Stationary Processes489
4.Convergence to a General Process with Independent Increments499
4a.Proof of Theorem 4.1 When the Characteristic Function of Xt Vanishes Almost Nowhere501
4b.Convergence of Point Processes503
4c.Convergence to a Gaussian Martingale504
5.Convergence to a Mixture of PII's,Stable Convergence and Mixing Convergence506
5a.Convergence to a Mixture of PII's506
5b.More on the Convergence to a Mixture of PII's510
5c.Stable Convergence512
5d.Mixing Convergence518
5e.Application to Stationary Processes519
Chapter Ⅸ.Convergence to a Semimartingale521
1.Limits of Martingales521
1a.The Bounded Case522
1b.The Unbounded Case524
2.Identification of the Limit527
2a.Introductory Remarks527
2b.Identification of the Limit:The Main Result530
2c.Identification of the Limit Via Convergence of the Characteristics533
2d.Application:Existence of Solutions to Some Martingale Problems535
3.Limit Theorems for Semimartingales540
3a.Tightness of the Sequence(Xn)541
3b.Limit Theorems:The Bounded Case546
3c.Limit Theorems:The Locally Bounded Case550
4.Applications554
4a.Convergence of Diffusion Processes with Jumps554
4b.Convergence of Step Markov Processes to Diffusions557
4c.Empirical Distributions and Brownian Bridge560
4d.Convergence to a Continuous Semimartingale:Necessary and Sufficient Conditions561
5.Convergence of Stochastic Integrals564
5a.Characteristics of Stochastic Integrals564
5b.Statement of the Results567
5c.The Proofs570
6.Stability for Stochastic Differential Equation575
6a.Auxiliary Results576
6b.Stochastic Differential Equations577
6c.Stability578
7.Stable Convergence to a Progressive Conditional Continuous PII583
7a.A General Result583
7b.Convergence of Discretized Processes589
Chapter Ⅹ.Limit Theorems,Density Processes and Contiguity592
1.Convergence of the Density Processes to a Continuous Process593
1a.Introduction,Statement of the Main Results593
1b.An Auxiliary Computation597
1c.Proofs of Theorems 1.12 and 1.16603
1d.Convergence to the Exponential of a Continuous Martingale606
1e.Convergencein Terms of Hellinger Processes609
2.Convergence of the Log-Likelihood to a Process with Independent Increments612
2a.Introduction Statement of the Results612
2b.The Proof of Theorem 2.12615
2c.Example:Point Processes619
3.The Statistical Invariance Principle620
3a.General Results621
3b.Convergence to a Gaussian Martingale623
Bibliographical Comments629
References641
Index of Symbols653
Index of Terminology655
Index of Topics659
Index of Conditions for Limit Theorems661