图书介绍
结构动力学PDF|Epub|txt|kindle电子书版本网盘下载
![结构动力学](https://www.shukui.net/cover/47/30472383.jpg)
- 周思达,(比)沃德·海伦(Ward Heylen),刘莉著 著
- 出版社: 北京:北京理工大学出版社
- ISBN:9787568231008
- 出版时间:2016
- 标注页数:286页
- 文件大小:42MB
- 文件页数:300页
- 主题词:结构动力学-高等学校-教材-英文
PDF下载
下载说明
结构动力学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Table of Contents1
1 Introduction to Structural Dynamics1
1.1 Essential Characteristics and Basic Assumptions1
1.1.1 Essential Characteristics2
1.1.2 Basic Assumptions in Structural Dynamics of This Book3
1.2 Missions of Structural Dynamics5
1.2.1 Response Analysis5
1.2.2 Inverse Problem of Type Ⅰ: System Identification6
1.2.3 Inverse Problem Type Ⅱ: Load Identification6
1.2.4 Vibration Control6
1.3 Types of Dynamic Loads7
1.3.1 Periodic Load7
1.3.2 Impulsive Load9
1.3.3 Random Load9
1.4 Formulation of the Equations of Motion9
1.4.1 Direct Equilibration Using d'Alembert's Principle10
1.4.2 Variational Approach10
1.5 Continuous and Discrete Structural Systems13
References15
2 Time-Domain Analysis of Continuous Systems17
2.1 Free Transverse Vibration of Strings18
2.2 Free Axial Vibration of Elastic Rods20
2.3 Free Torsional Vibration of Cylinder Rods22
2.4 Free Transverse Vibration of Euler-Bernoulli Beams23
2.4.1 Simple Supported Beams25
2.4.2 Cantilever Beams26
2.4.3 Fixed-Fixed Beams27
2.4.4 Free-Free Beams28
2.5 Free Transverse Vibration of Rectangular Thin Plates29
2.5.1 Kinematic Description29
2.5.2 Equilibrium Equation31
2.5.3 Boundary Conditions33
2.5.4 Solutions of Rectangular Thin Plates with Simple-supported Edges34
2.6 Some Properties of Natural Modes36
2.6.1 Orthogonality of Mode Shapes37
2.6.2 Modal Scaling38
2.6.3 Expansion Theorem40
2.6.4 Rayleigh Quotient40
Problems41
References43
3 Time-Domain Analysis of SDOF Systems44
3.1 From Continuous Systems to Generalized SDOF Systems44
3.1.1 Historical Rayleigh's Method44
3.1.2 An Improved Approach of Rayleigh's Method48
3.2 Mathematical Modelling of Lumped-Parameter Systems51
3.2.1 Direct Equilibration Modeling Using d'Alembert's Principle52
3.2.2 Modeling Based on Principle of Virtual Displacements53
3.3 Free Vibration of SDOF Systems53
3.3.1 Free Vibration of Undamped SDOF Systems53
3.3.2 Free Vibration of Viscous-Damped SDOF Systems56
3.4 Dynamic Behavior of Undamped SDOF Systems under Harmonic Excitation61
3.5 Viscous-Damped SDOF Systems to Harmonic Excitation62
3.5.1 General Solution62
3.5.2 Steady-State Response64
3.5.3 Complex Expression of the Response66
3.5.4 Resonance Response66
3.5.5 Forced Vibration by Support Motion69
3.5.6 Vibration Isolation72
3.5.7 Motion Transducer75
3.6 Expansion to Periodic Excitation via Fourier Series79
3.6.1 Fourier Series for Arbitrary Periodic Functions79
3.6.2 Steady-State Response under Arbitrary Periodic Excitations80
3.7 Response to Impulsive Loading82
3.7.1 Pulse Excitation82
3.7.2 Shock Response Spectrum89
3.7.3 Shock Isolation91
3.8 Response of SDOF Systems in Case of the General Dynamic Excitation92
3.8.1 Impulse Function92
3.8.2 Impulse Response93
3.8.3 Duhamel Integration94
3.8.4 Arbitrary Support Motion96
3.9 Damping97
3.9.1 Damping Models in Structural Dynamics98
3.9.2 Energy Losses and Equivalent Viscous Damping104
3.9.3 Illustration of the Errors Due to the Equivalence110
Problems112
References117
4 Time-Domain Analysis of MDOF Systems118
4.1 Continuous Systems to MDOF Systems: Discretization Approaches119
4.1.1 Direct Lumped-Parameter Methods119
4.1.2 Generalized Displacements & Rayleigh-Ritz's Methods120
4.1.3 Assumed Mode Method: a Realization of General Rayleigh-Ritz Methods125
4.1.4 Choosing the Shape Functions128
4.1.5 Finite Element Method129
4.2 Modeling of Equations of Motion for MDOF Systems137
4.2.1 Direct Equilibration Modeling Using d'Alembert's Principle137
4.2.2 Modeling with Principle of Virtual Displacements138
4.2.3 Modeling with Lagrange's Equations139
4.3 Free Vibration of Undamped MDOF Systems140
4.3.1 Eigenvalue Problem, Natural Frequencies and Mode Shapes140
4.3.2 Orthogonality144
4.3.3 Modal Scaling147
4.3.4 Eigenvalue Separation Property148
4.4 Rayleigh and Rayleigh-Ritz's Methods for MDOF Systems:Model Reduction149
4.4.1 Rayleigh Quotient for MDOF Systems149
4.4.2 Rayleigh's Method for MDOF Systems150
4.4.3 Rayleigh-Ritz's Method for MDOF Systems151
4.4.4 Assumed Mode Method for MDOF Systems155
4.5 MDOF Systems with Rigid-Body Modes155
4.5.1 Small Fictitious Stiffness156
4.5.2 Eigenvalue Shifting157
4.5.3 Constraining of Rigid-Body Modes159
4.6 Damping in MDOF systems160
4.7 Numerical Evaluation of Responses of MDOF Systems160
4.7.1 Numerical Derivatives161
4.7.2 Central Difference Method161
4.7.3 Newmark-β Method163
4.8 Dynamic Response of MDOF Systems: Mode Superposition Method167
4.8.1 Transformation of Coordinates167
4.8.2 Modal Damping168
4.8.3 Initial Conditions in Modal Coordinates169
4.8.4 Mode Superposition for Free Vibration of Undamped MDOF Systems169
4.8.5 Mode Superposition of Free Vibration of Damped MDOF Systems171
4.8.6 Mode Superposition of Forced Vibration of Undamped MDOF Systems171
4.8.7 Mode Superposition of Forced Vibration of Damped MDOF Systems172
4.8.8 Mode-Displacement Solution and Mode-Acceleration Solution172
Problems174
References177
5 Frequency-Domain Analysis178
5.1 Frequency-Domain Analysis of SDOF Systems178
5.1.1 System Equations and Transfer Function179
5.1.2 Poles, Natural Frequencies, Damping Ratio and Residues179
5.1.3 Transfer Function Plots181
5.1.4 Frequency Response Function and Impulse Response Function181
5.1.5 Influence of Mass, Damping and Stiffness Changes183
5.2 Frequency-Domain Analysis of MDOF Systems185
5.2.1 System Equations and Transfer Function185
5.2.2 Poles, Natural Frequencies and Damping Ratio186
5.2.3 Modal Vectors and Residues187
5.2.4 Modal Participation Factors189
5.2.5 Frequency Response Function Matrix and Impulse Response Function Matrix189
5.2.6 Undamped and Proportionally Damped Systems191
5.2.7 Orthogonality193
5.2.8 Modal Vector Scaling197
5.2.9 Numerical and Experimental Approaches198
References200
6 Experimental Modal Analysis and Applications201
6.1 Basic Modal Model Equations201
6.1.1 Modal Model202
6.1.2 State Space Model203
6.1.3 Rational Fraction Polynomial Model204
6.2 Modal Parameter Estimation205
6.2.1 Basic Concept206
6.2.2 SDOF Methods210
6.2.3 MDOF Time-Domain Methods213
6.2.4 MDOF Frequency-Domain Methods217
6.2.5 Output-Only or Operational Modal Analysis225
6.2.6 Conclusions229
6.3 Modal Validation231
6.3.1 Modal Scale Factor and Modal Assurance Criterion232
6.3.2 Mode Participation233
6.3.3 Reciprocity235
6.3.4 Mode Complexity235
6.3.5 Modal Phase Collinearity and Mean Phase Deviation236
6.3.6 Modal Confidence Factor237
6.3.7 Synthesis of Frequency Response Functions238
6.3.8 Discussion238
6.4 Applications of Modal Parameters239
6.4.1 Forced Response Analysis239
6.4.2 Sensitivity Analysis241
6.4.3 Structural Dynamics Modification & Assembly246
6.5 Combining Numerical and Experimental Models261
6.5.1 Model Updating261
6.5.2 Pre-Test Analysis275
References282