图书介绍

复分析 英文PDF|Epub|txt|kindle电子书版本网盘下载

复分析 英文
  • (美国)斯坦恩著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787510040542
  • 出版时间:2013
  • 标注页数:379页
  • 文件大小:44MB
  • 文件页数:396页
  • 主题词:复分析-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

复分析 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.Preliminaries to Complex Analysis1

1 Complex numbers and the complex plane1

1.1 Basic properties1

1.2 Convergence5

1.3 Sets in the complex plane5

2 Functions on the complex plane8

2.1 Continuous functions8

2.2 Holomorphic functions8

2.3 Power series14

3 Integration along curves18

4 Exercises24

Chapter 2.Cauchy's Theorem and Its Applications32

1 Goursat's theorem34

2 Local existence of primitives and Cauchy's theorem in a disc37

3 Evaluation of some integrals41

4 Cauchy's integral formulas45

5 Further applications53

5.1 Morera's theorem53

5.2 Sequences of holomorphic functions53

5.3 Holomorphic functions defined in terms of integrals55

5.4 Schwarz reflection principle57

5.5 Runge's approximation theorem60

6 Exercises64

7 Problems67

Chapter 3.Meromorphic Functions and the Logarithm71

1 Zeros and poles72

2 The residue formula76

2.1 Examples77

3 Singularities and meromorphic functions83

4 The argument principle and applications89

5 Homotopies and simply connected domains93

6 The complex logarithm97

7 Fourier series and harmonic functions101

8 Exercises103

9 Problems108

Chapter 4.The Fourier Transform111

1 The class ?113

2 Action of the Fourier transform on ?114

3 Paley-Wiener theorem121

4 Exercises127

5 Problems131

Chapter 5.Entire Functions134

1 Jensen's formula135

2 Functions of finite order138

3 Infinite products140

3.1 Generalities140

3.2 Example:the product formula for the sine function142

4 Weierstrass infinite products145

5 Hadamard's factorization theorem147

6 Exercises153

7 Problems156

Chapter 6.The Gamma and Zeta Functions159

1 The gamma function160

1.1 Analytic continuation161

1.2 Further properties of г163

2 The zeta function168

2.1 Functional equation and analytic continuation168

3 Exercises174

4 Problems179

Chapter 7.The Zeta Function and Prime Number The-orem181

1 Zeros of the zeta function182

1.1 Estimates for 1/ζ(s)187

2 Reduction to the functionsψandψ1188

2.1 Proof of the asymptotics forψ1194

Note on interchanging double sums197

3 Exercises199

4 Problems203

Chapter 8.Conformal Mappings205

1 Conformal equivalence and examples206

1.1 The disc and upper half-plane208

1.2 Further examples209

1.3 The Dirichlet problem in a strip212

2 The Schwarz lemma;automorphisms of the disc and upper half-plane218

2.1 Automorphisms of the disc219

2.2 Automorphisms of the upper half-plane221

3 The Riemann mapping theorem224

3.1 Necessary conditions and statement of the theorem224

3.2 Montel's theorem225

3.3 Proof of the Riemann mapping theorem228

4 Conformal mappings onto polygons231

4.1 Some examples231

4.2 The Schwarz-Christoffel integral235

4.3 Boundary behavior238

4.4 The mapping formula241

4.5 Return to elliptic integrals245

5 Exercises248

6 Problems254

Chapter 9.An Introduction to Elliptic Functions261

1 Elliptic functions262

1.1 Liouville's theorems264

1.2 The Weierstrass ? function266

2 The modular character of elliptic functions and Eisenstein series273

2.1 Eisenstein series273

2.2 Eisenstein series and divisor functions276

3 Exercises278

4 Problems281

Chapter 10.Applications of Theta Functions283

1 Product formula for the Jacobi theta function284

1.1 Further transformation laws289

2 Generating functions293

3 The theorems about sums of squares296

3.1 The two-squares theorem297

3.2 The four-squares theorem304

4 Exercises309

5 Problems314

Appendix A:Asymptotics318

1 Bessel functions319

2 Laplace's method;Stirling's formula323

3 The Airy function328

4 The partition function334

5 Problems341

Appendix B:Simple Connectivity and Jordan Curve Theorem344

1 Equivalent formulations of simple connectivity345

2 The Jordan curve theorem351

2.1 Proof of a general form of Cauchy's theorem361

Notes and References365

Bibliography369

Symbol Glossary373

Index375

热门推荐