图书介绍
复分析 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (美国)斯坦恩著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510040542
- 出版时间:2013
- 标注页数:379页
- 文件大小:44MB
- 文件页数:396页
- 主题词:复分析-高等学校-教材-英文
PDF下载
下载说明
复分析 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.Preliminaries to Complex Analysis1
1 Complex numbers and the complex plane1
1.1 Basic properties1
1.2 Convergence5
1.3 Sets in the complex plane5
2 Functions on the complex plane8
2.1 Continuous functions8
2.2 Holomorphic functions8
2.3 Power series14
3 Integration along curves18
4 Exercises24
Chapter 2.Cauchy's Theorem and Its Applications32
1 Goursat's theorem34
2 Local existence of primitives and Cauchy's theorem in a disc37
3 Evaluation of some integrals41
4 Cauchy's integral formulas45
5 Further applications53
5.1 Morera's theorem53
5.2 Sequences of holomorphic functions53
5.3 Holomorphic functions defined in terms of integrals55
5.4 Schwarz reflection principle57
5.5 Runge's approximation theorem60
6 Exercises64
7 Problems67
Chapter 3.Meromorphic Functions and the Logarithm71
1 Zeros and poles72
2 The residue formula76
2.1 Examples77
3 Singularities and meromorphic functions83
4 The argument principle and applications89
5 Homotopies and simply connected domains93
6 The complex logarithm97
7 Fourier series and harmonic functions101
8 Exercises103
9 Problems108
Chapter 4.The Fourier Transform111
1 The class ?113
2 Action of the Fourier transform on ?114
3 Paley-Wiener theorem121
4 Exercises127
5 Problems131
Chapter 5.Entire Functions134
1 Jensen's formula135
2 Functions of finite order138
3 Infinite products140
3.1 Generalities140
3.2 Example:the product formula for the sine function142
4 Weierstrass infinite products145
5 Hadamard's factorization theorem147
6 Exercises153
7 Problems156
Chapter 6.The Gamma and Zeta Functions159
1 The gamma function160
1.1 Analytic continuation161
1.2 Further properties of г163
2 The zeta function168
2.1 Functional equation and analytic continuation168
3 Exercises174
4 Problems179
Chapter 7.The Zeta Function and Prime Number The-orem181
1 Zeros of the zeta function182
1.1 Estimates for 1/ζ(s)187
2 Reduction to the functionsψandψ1188
2.1 Proof of the asymptotics forψ1194
Note on interchanging double sums197
3 Exercises199
4 Problems203
Chapter 8.Conformal Mappings205
1 Conformal equivalence and examples206
1.1 The disc and upper half-plane208
1.2 Further examples209
1.3 The Dirichlet problem in a strip212
2 The Schwarz lemma;automorphisms of the disc and upper half-plane218
2.1 Automorphisms of the disc219
2.2 Automorphisms of the upper half-plane221
3 The Riemann mapping theorem224
3.1 Necessary conditions and statement of the theorem224
3.2 Montel's theorem225
3.3 Proof of the Riemann mapping theorem228
4 Conformal mappings onto polygons231
4.1 Some examples231
4.2 The Schwarz-Christoffel integral235
4.3 Boundary behavior238
4.4 The mapping formula241
4.5 Return to elliptic integrals245
5 Exercises248
6 Problems254
Chapter 9.An Introduction to Elliptic Functions261
1 Elliptic functions262
1.1 Liouville's theorems264
1.2 The Weierstrass ? function266
2 The modular character of elliptic functions and Eisenstein series273
2.1 Eisenstein series273
2.2 Eisenstein series and divisor functions276
3 Exercises278
4 Problems281
Chapter 10.Applications of Theta Functions283
1 Product formula for the Jacobi theta function284
1.1 Further transformation laws289
2 Generating functions293
3 The theorems about sums of squares296
3.1 The two-squares theorem297
3.2 The four-squares theorem304
4 Exercises309
5 Problems314
Appendix A:Asymptotics318
1 Bessel functions319
2 Laplace's method;Stirling's formula323
3 The Airy function328
4 The partition function334
5 Problems341
Appendix B:Simple Connectivity and Jordan Curve Theorem344
1 Equivalent formulations of simple connectivity345
2 The Jordan curve theorem351
2.1 Proof of a general form of Cauchy's theorem361
Notes and References365
Bibliography369
Symbol Glossary373
Index375