图书介绍
催化剂分离、回收与再生 化学与工艺流程设计 英文本PDF|Epub|txt|kindle电子书版本网盘下载
![催化剂分离、回收与再生 化学与工艺流程设计 英文本](https://www.shukui.net/cover/66/34422227.jpg)
- (英)David J. Cole-Hamilton,(英)Robert P. Tooze编著 著
- 出版社: 北京:科学出版社
- ISBN:9787030211897
- 出版时间:2008
- 标注页数:250页
- 文件大小:125MB
- 文件页数:259页
- 主题词:催化剂再生-英文
PDF下载
下载说明
催化剂分离、回收与再生 化学与工艺流程设计 英文本PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 HOMOGENEOUS CATALYSIS-ADVANTAGES AND PROBLEMS1
1.1 Catalysis1
1.2 Catalyst Stability4
1.2.1 THERMALLY INDUCED DECOMPOSITION4
1.2.2 CHEMICALLY INDUCED DECOMPOSITION5
1.2.3 PHYSICAL LOSS FROM THE PROCESS6
1.3 Layout of the Book6
1.4 References8
CHAPTER 2 CLASSICAL HOMOGENEOUS CATALYST SEPARATION TECHNOLOGY9
2.1.1 Coverage of Chapter9
2.2 Generai Process Considerations9
2.3 Everything is a Reactor10
2.4 Overview of Separation Technologies10
2.4.1 TRADITIONAL COBAL T WITH CATAL YST DECOMPOSITION10
2.4.2 UNION CARBIDE-DAVY GAS RECYCLE PROCESS11
2.4.3 LIQUID RECYCLE12
2.4.4 BIPHASIC SYSTEMS;WATER-ORGANIC14
2.4.5 INDUCED PHASE SEPARATION14
2.4.6 NON-AQUEOUS PHASE SEPARATION15
2.4.6.1 NAPS Using a Non-Polar Catalyst16
2.4.6.2 NAPS Using a Polar Catalyst17
2.4.6.3 Ligand Structure and Solubility Properties17
2.5 Hypothetical processes-How Might the Product be Separated from the Catalyst?18
2.5.1 PROPENE HYDROFORMYLATION19
2.5.2 l-OCTENE HYDROFORMYLATION20
2.5.3 ALLYL ALCOHOL20
2.5.4 METHOXYVINYLNAPHTHALENE21
2.5.5 SEPARATION TECHNOLOGY FOR LESS STABLE CATALYSTS22
2.5.5.1 Mitsubishi TPPO/TPP Separation22
2.5.5.2 Organic Polymer for Catalyst Stabilization22
2.6 Real-World Complications22
2.6.1 ORGANOPHOSPHORUS LIGAND DEGRADATIONS23
2.6.1.1 Oxidation23
2.6.1.2 Alkyldiarylphosphine Formation23
2.6.1.3 Ligand Scrambling24
2.6.1.4 Phosphine Reactions with Conjugated Systems24
2.6.1.5 Phosphite Oxidation24
2.6.1.6 Simple Phosphite Hydrolysis25
2.6.1.7 Poisoning Phosphite Formation25
2.6.1.8 Aldehyde Acid Formation25
2.6.1.9 Acidity Control26
2.6.2 SEPARATING BYPRODUCTS FROM REACTANTS OR PRODUCTS27
2.6.2.1 Alkene Hydrogenation27
2.6.2.2 Alkene Isomerization27
2.6.2.3 Aldehyde Dimerization and Trimerization27
2.6.2.4 Formation of Conjugated Carbonyls28
2.6.3 INTRINSIC CATALYST DEACTIVATION28
2.7 Further Separation Challenges29
2.7.1 RECOVERY OF METAL VALUES FROM A SPENT CATALYST29
2.7.1.1 Catalyst Containment and Capture Technologies30
2.8 Concluding Remarks35
2.9 References36
CHAPTER 3 SUPPORTED CATALYSTS39
Immobilisation of Tailor-made Homogeneous Catalysts39
3.1 Introduction39
3.2 Short Historical Overview40
3.3 Polystyrene Supported Catalysts41
3.4 Silica Supported Catalyst44
3.5 Catalysis in Interphases53
3.6 Ordered Mesoporous Support58
3.7 Non-covalently Supported Catalysts60
3.8 Supported Aqueous Phase Catalysis63
3.9 Process Design [71]65
3.10 Concluding Remarks68
3.11 References69
CHAPTER 4 SEPARATION BY SIZE-EXCLUSION FILTRATION73
Homogeneous Catalysts Applied in Membrane Reactors73
4.1 Introduction73
4.2 Reactors74
4.2.1 DEAD-END FILTRATION REACTORS75
4.2.2 CROSS-FLOW FILTRATION REACTORS76
4.3 Membranes78
4.3.1 CLASSIFICATION OF FILTRATION TYPES78
4.3.2 MEMBRANE MATERIALS79
4.4 Dendrimer Supported Catalysts80
4.4.1 KHARASCH ADDITION REACTION81
4.4.2 ALLYLIC SUBSTITUTION REACTIONS82
4.4.3 HYDROVINYLATION REACTION86
4.4.4 HYDROGENATION REACTION88
4.4.5 MICHAEL ADDITION REACTION89
4.5 Dendritic Effects90
4.6 Unmodified or Non-dendritic Catalysts94
4.6.1 HYDROGENATION95
4.6.2 PHASE TRANSFER CATALYSIS97
4.7 Soluble Polymer Supported Catalysts98
4.8 Concluding Remarks102
4.9 References102
CHAPTER 5 BIPHASIC SYSTEMS:WATER-ORGANIC105
5.1 Introduction105
5.2 Immobilization with the Help of Liquid Supports106
5.2.1 GENERAL106
5.2.2 BIPHASIC SYSTEMS107
5.2.3 AQUEOUS BIPHASIC CATALYSIS108
5.2.3.1 Water as a Solvent108
5.2.3.2 Aqueous-phase Catalysis as a Unit Operation110
5.2.4 EXAMPLES OF AQUEOUS BIPHASIC CATALYSIS114
5.2.4.1 Hydroformylation(Ruhrchemie/Rh?ne-Poulenc[RCH/RP]process)114
5.2.4.2 Other Industrially Used Aqueous-biphasic Processes116
5.2.4.3 Short Overview of Other Reaction118
5.2.5 OTHER PROPOSALS FOR WATER-BIPHASIC SYSTEMS119
5.2.6 INTERLUDE-BIPHASIC SYSTEMS:ORGANIC-ORGANIC123
5.3 Recycle and Recovery of Aqueous Catalysts124
5.3.1 RECYCLING126
5.3.2 RECOVERY128
5.3.3 ECONOMICS OF THE PROCESS132
5.3.4 ENVIRONMENTAL ASPECTS132
5.4 Concluding Remarks134
5.5 References135
CHAPTER 6 FLUOROUS BIPHASIC CATALYSIS145
6.1 Introduction145
6.2 Aikene Hydrogenation148
6.3 Alkene Hydrosilation151
6.4 Alkene Hydroboration151
6.5 Alkene Hydroformylation152
6.6 Alkene Epoxidation158
6.7 Other Oxidation Reactions161
6.8 Allylic Alkylation163
6.9 Heck,Stille,Suzuki,Sonagashira and Related Coupling Reactions164
6.10 Asymmetric Alkylation of Aldehydes166
6.11 Miscellaneous Catalytic Reactions169
6.12 Fluorous Catalysis Without Fluorous Solvents170
6.13 Continuous Processing171
6.14 Process Synthesis for the Fluorous Biphasic Hydroformylation of l-Octene175
6.15 Conclusions178
6.16 Acknowledgement179
6.17 References179
CHAPTER 7 CATALYST RECYCLING USING IONIC LIQUIDS183
7.1 Introduction183
7.1.1 INTRODUCTION TO IONIC LIQUIDS183
7.1.2 INTRODUCTION TO TRANSITION METAL CATALYSIS IN IONIC LIQUIDS187
7.1.3 MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS-ENGINEERING ASPECTS189
7.2 Liquid-liquid Biphasic,Rh-catalysed Hydroformylation Using Ionic Liquids192
7.3 Rhodium Catalysed Hydroformylation Using Supported Ionic Liquid Phase SILP)Catalysis201
7.3.1 SUPPORTED IONIC LIQUIDS BY CHEMICAL BONDS203
7.3.2 SUPPORTED IONIC LIQUIDS BY IMPREGNATION204
7.4 Costs And Economics206
7.5 Conclusions209
7.6 References210
CHAPTER 8 SUPERCRITICAL FLUIDS215
Compressed Gases as Mobile Phase and Catalyst Support215
8.1 Introduction to supercritical fluids215
8.2 Applications of scCO2 in Catalyst Immobilisation217
8.2.1 CO2 AS THE ONLY MASS SEPARATING AGENT217
8.2.2 BIPHASIC SYSTEMS CONSISTING OF CO2 AND LIQUID PHASES223
8.2.2.1 Water as the Liquid Phase223
8.2.2.2 Poly(ethyleneglycol)(PEG)as the Liquid Phase225
8.2.2.3 Ionic Liquids as the Liquid Phase225
8.2.3 BIPHASIC SYSTEMS CONSISTING OF CO2 AND SOLID PHASES230
8.2.3.1 Inorganic Supports230
8.2.3.2 Organic Polymer Supports231
8.3 Economic Evaluation and Summary232
8.3.1 POTENTIAL FOR SCALE-UP232
8.4 Summary234
8.5 References234
CHAPTER 9 AREAS FOR FURTHER RESEARCH237
9.1 Introduction237
9.2 Conventional Separation Methods(See Chapter 2)239
9.3 Catalysts on Insoluble Supports(Chapter 3)240
9.4 Catalysts on Soluble Supports(Chapter 4)241
9.5 Aqueous Biphasic Catalysis(Chapter 5)242
9.6 Fluorous Biphasic Catalysis(Chapter 6)243
9.7 Reactions Involving Ionic Liquids(Chaoter 7)244
9.8 Reactions Using Supercritical Fluids(Chapter 8)245
9.9 Conclusions247
9.10 References247