图书介绍

计量经济学导论 第4版PDF|Epub|txt|kindle电子书版本网盘下载

计量经济学导论 第4版
  • JeffreyM·Wooldridge,王少平著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040395945
  • 出版时间:2014
  • 标注页数:481页
  • 文件大小:74MB
  • 文件页数:497页
  • 主题词:计量经济学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计量经济学导论 第4版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 The Nature of Econometrics and Economic Data1

1.1 What Is Econometrics?1

1.2 Steps in Empirical Economic Analysis2

1.3 The Structure of Economic Data5

1.4 Causality and the Notion of Ceteris Paribus in Econometric Analysis12

Summary16

Key Terms17

Computer Exercises17

PART 1 Regression Analysis With Cross-Sectional Data19

Chapter 2 The Simple Regression Model20

2.1 Definition of the Simple Regression Model20

2.2 Deriving the Ordinary Least Squares Estimates25

2.3 Properties of OLS on Any Sample of Data34

2.4 Units of Measurement and Functional Form39

2.5 Expected Values and Variances of the OLS Estimators44

2.6 Regression through the Origin56

Summary57

Key Terms58

Computer Exercises59

Appendix 2A61

Chapter 3 Multiple Regression Analysis:Estimation63

3.1 Motivation for Multiple Regression63

3.2 Mechanics and Interpretation of Ordinary Least Squares68

3.3 The Expected Value of the OLS Estimators80

3.4 The Variance of the OLS Estimators90

3.5 Efficiency of OLS:The Gauss-Markov Theorem99

Summary100

Key Terms101

Computer Exercises102

Appendix 3A105

Chapter 4 Multiple Regression Analysis:Inference109

4.1 Sampling Distributions of the OLS Estimators109

4.2 Testing Hypotheses about a Single Population Parameter:The t Test112

4.3 Confidence Intervals130

4.4 Testing Hypotheses about a Single Linear Combination of the Parameters132

4.5 Testing Multiple Linear Restrictions:The F Test135

4.6 Reporting Regression Results146

Summary148

Key Terms150

Computer Exercises151

Chapter 5 Multiple Regression Analysis:OLS Asymptotics154

5.1 Consistency154

5.2 Asymptotic Normality and Large Sample Inference159

5.3 Asymptotic Efficiency of OLS166

Summary167

Key Terms168

Computer Exercises168

Appendix 5A169

Chapter 6 Multiple Regression Analysis with Qualitative Information:Binary(or Dummy)Variables171

6.1 Describing Qualitative Information171

6.2 A Single Dummy Independent Variable172

6.3 Using Dummy Variables for Multiple Categories179

6.4 Interactions Involving Dummy Variables184

6.5 A Binary Dependent Variable:The Linear Probability Model192

6.6 More on Policy Analysis and Program Evaluation197

Summary200

Key Terms201

Computer Exercises201

Chapter 7 HeterOskedasticity207

7.1 Consequences of Heteroskedasticity for OLS207

7.2 Heteroskedasticity-Robust Inference after OLS Estimation208

7.3 Testing for Heteroskedasticity212

7.4 Weighted Least Squares Estimation218

7.5 The Linear Probability Model Revisited231

Summary234

Key Terms234

Computer Exercises235

Chapter 8 More on Specification238

8.1 Functional Form Misspecification238

Summary244

Key Terms244

Computer Exercises244

PART 2 Regression Analysis with Tine Series Data245

Chapter 9 Basic Regression Analysis with Time Series Data246

9.1 The Nature of Time Series Data246

9.2 Examples of Time Series Regression Models248

9.3 Finite Sample Properties of OLS under Classical Assumptions251

9.4 Functional Form,Dummy Variables,and Index Numbers259

9.5 Trends and Seasonality266

Summary276

Key Terrns277

Computer Exercises277

Chapter 10 Further Issues in Using OLS with Time Series Data281

10.1 Stationary and Nonstationary Time Series281

10.2 Asymptotic Properties of OLS283

10.3 Using Highly Persistent Time Series in Regression Analysis289

Summary296

Key Terms297

Computer Exercises297

Chapter 11 Serial Correlation and Heteroskedasticity in Time Series Regressions302

11.1 Properties of OLS with Serially Correlated Errors302

11.2 Testing for Serial Correlation306

11.3 Correcting for Serial Correlation with Strictly Exogenous Regressors313

11.4 Differencing and Serial Correlation320

11.5 Serial Correlation-Robust Inference after OLS322

11.6 Heteroskedasticity in Time Series Regressions326

Summary331

Key Terms331

Computer Exercises332

PART 3 Advanced Topics337

Chapter 12 Advanced Panel Data Methods338

12.1 Fixed Effects Estimation338

12.2 Random Effects Models346

12.3 Applying Panel Data Methods to Other Data Structures351

Summary353

Key Terms353

Computer Exercises354

Appendix 12A357

Chapter 13 Instrumental Variables Estimation and Two Stage Least Squares360

13.1 Motivation:Omitted Variables in a Simple Regression Model361

13.2 IV Estimation of the Multiple Regression Model371

13.3 Two Stage Least Squares375

13.4 IV Solutions to Errors-in-Variables Problems379

13.5 Testing for Endogeneity and Testing Overidentifying Restrictions381

13.6 2SLS with Heteroskedasticity385

13.7 Applying 2SLS to Time Series Equations385

Summary388

Key Terms388

Computer Exercises388

Appendix 13A392

Chapter 14 Limited Dependent Variable Models395

14.1 Logit and Probit Models for Binary Response396

14.2 The Tobit Model for Corner Solution Responses408

Summary416

Key Terms417

Computer Exercises417

Chapter 15 Advanced Time Series Topics422

15.1 Infinite Distributed Lag Models423

15.2 Testing for Unit Roots429

15.3 Cointegration and Error Correction Models435

15.4 Forecasting441

Summary450

Key Terms451

Computer Exercises451

Appendix A The NormaI and Related Distributions455

Appendix B Answers to Chapter Questions463

Appendix C Statistical Tables470

References477

热门推荐