图书介绍

医用高等数学 第4版PDF|Epub|txt|kindle电子书版本网盘下载

医用高等数学 第4版
  • 张选群主编 著
  • 出版社: 北京:人民卫生出版社
  • ISBN:7117060824
  • 出版时间:2004
  • 标注页数:207页
  • 文件大小:7MB
  • 文件页数:218页
  • 主题词:医用数学-医学院校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

医用高等数学 第4版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 函数和极限1

第一节 函数1

一、函数的概念1

二、初等函数2

三、分段函数3

四、函数的几种简单特性4

第二节 极限5

一、极限的概念5

二、无穷小量及其性质9

三、极限的四则运算10

四、两个重要极限12

第三节 函数的连续性14

一、函数连续的概念14

二、初等函数的连续性16

三、闭区间上连续函数的性质17

习题一18

一、实例21

第二章 一元函数微分学21

第一节 导数的概念21

二、导数的定义及几何意义22

三、函数可导与连续的关系24

第二节 初等函数的导数25

一、按定义求导数25

二、函数四则运算的求导法则26

三、反函数的求导法则28

四、复合函数的求导法则29

五、隐函数的求导法则30

六、对数求导法31

七、初等函数的导数32

八、高阶导数32

第三节 微分34

一、微分的概念34

三、微分的基本公式与法则36

二、微分与导数的关系36

四、一阶微分形式不变性37

第四节 导数的应用38

一、 Lagrange中值定理38

二、L′Hospital法则39

三、函数的单调性和极限40

四、函数曲线的凹凸性和拐点44

五、函数曲线的渐近线46

六、函数图形的描绘47

习题二50

第三章 一元函数积分学54

第一节 不定积分54

一、不定积分的概念54

二、不定积分的性质和基本积分公式55

三、换元积分法57

四、分部积分法60

五、有理函数的积分62

第二节 定积分64

一、定积分的概念64

二、定积分的性质67

三、牛顿——莱布尼兹公式67

四、定积分的换元积分法和分部积分法69

第三节 定积分的应用71

一、平面图形的面积71

二、旋转体的体积73

三、变力沿直线所做的功74

四、连续函数在已知区间上的平均值74

五、定积分在医学中的应用75

第四节 广义积分76

一、无穷区间的广义积分76

二、无界函数的广义积分77

习题三78

第一节 多元函数83

一、空间解析几何简介83

第四章 多元函数微积分83

二、多元函数的概念85

三、二元函数的极限与连续86

第二节 偏导数与全微分87

一、偏导数的概念87

二、偏导数的几何意义89

三、高阶偏导数90

四、全微分90

一、复合函数微分法92

第三节 多元函数微分法92

二、隐函数微分法95

第四节 多元函数的极值96

一、二元函数的极值96

二、条件极值98

第五节 二重积分100

一、二重积分的概念与性质100

二、二重积分的计算102

习题四111

第五章 微分方程基础114

第一节 一般概念114

第二节 一阶微分方程116

一、可分离变量的微分方程116

二、一阶线性微分方程118

第三节 可降阶的二阶微分方程120

一、y″=f(x)型的微分方程120

三、y″=f(y,y′)型的微分方程121

二、y″=f(x,y′)型的微分方程121

第四节 二阶常系数线性齐次微分方程122

第五节 微分方程在医学上的应用127

一、细菌的繁殖128

二、药物动力学模型129

三、流行病数学模型130

习题五131

二、事件的关系与运算133

一、随机试验与随机事件133

第一节 随机事件及概率133

第六章 概率论基础133

三、概率的定义135

第二节 概率的基本公式139

一、概率的加法公式139

二、概率的乘法公式140

三、全概率公式和贝叶斯公式143

四、独立重复试验和伯努利概型145

一、随机变量及其分布函数147

第三节 随机变量及其概率分布147

二、离散型随机变量及其分布列148

三、连续型随机变量及其概率密度函数151

第四节 随机变量的数字特征157

一、数学期望157

二、方差161

三、大数定理和中心极限定理162

习题六165

一、行列式的概念和计算170

第七章 线性代数初步170

第一节 行列式170

二、行列式的性质与计算173

第二节 矩阵176

一、矩阵的概念176

二、矩阵的运算178

三、矩阵的逆183

第三节 矩阵的初等变换和线性方程组185

一、矩阵的秩和初等变换185

二、利用初等变换求逆矩阵187

三、矩阵的初等行变换与线性方程组188

第四节 矩阵的特征值与特征向量193

习题七194

习题参考答案197

附表1207

附表2207

热门推荐