图书介绍
加速器物理学 第2版 英文影印版PDF|Epub|txt|kindle电子书版本网盘下载
- (美)S.Y.Lee著 著
- 出版社: 上海:复旦大学出版社
- ISBN:
- 出版时间:未知
- 标注页数:576页
- 文件大小:169MB
- 文件页数:592页
- 主题词:
PDF下载
下载说明
加速器物理学 第2版 英文影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
Ⅰ Historical Developments4
Ⅰ.1 Natural Accelerators5
Ⅰ.2 Electrostatic Accelerators6
Ⅰ.3 Induction Accelerators6
Ⅰ.4 Radio-Frequency(RF)Accelerators9
Ⅰ.5 Colliders and Storage Rings17
Ⅰ.6 Synchrotron Radiation Storage Rings18
Ⅱ Layout and Components of Accelerators19
Ⅱ.1 Acceleration Cavities19
Ⅱ.2 Accelerator Magnets20
Ⅱ.3 Other Important Components22
Ⅲ Accelerator Applications23
Ⅲ.1 High Energy and Nuclear Physics23
Ⅲ.2 Solid-State and Condensed-Matter Physics24
Ⅲ.3 Other Applications24
Exercise24
2 Transverse Motion35
Ⅰ Hamiltonian for Particle Motion in Accelerators36
Ⅰ.1 Hamiltonian in Frenet-Serret Coordinate System37
Ⅰ.2 Magnetic Field in Frenet-Serret Coordinate System39
Ⅰ.3 Equation of Betatron Motion41
Ⅰ.4 Particle Motion in Dipole and Quadrupole Magnets41
Exercise42
Ⅱ Linear Betatron Motion47
Ⅱ.1 Transfer Matrix and Stability of Betatron Motion47
Ⅱ.2 Courant-Snyder Parametrization51
Ⅱ.3 Floquet Transformation52
Ⅱ.4 Action-Angle Variable and Floquet Transformation57
Ⅱ.5 Courant-Snyder Invariant and Emittance60
Ⅱ.6 Stability of Betatron Motion:A FODO Cell Example65
Ⅱ.7 Symplectic Condition66
Ⅱ.8 Effect of Space-Charge Force on Betatron Motion67
Exercise73
Ⅲ Effect of Linear Magnet Imperfections85
Ⅲ.1 Closed-Orbit Distortion due to Dipole Field Errors85
Ⅲ.2 Extended Matrix Method for the Closed Orbit91
Ⅲ.3 Application of Dipole Field Error92
Ⅲ.4 Quadrupole Field(Gradient)Errors101
Ⅲ.5 Basic Beam Observation of Transverse Motion105
Ⅲ.6 Application of quadrupole field error108
Ⅲ.7 Transverse Spectra110
Ⅲ.8 Beam Injection and Extraction115
Ⅲ.9 Mechanisms of emittance dilution and diffusion117
Exercise121
Ⅳ Off-Momentum Orbit129
Ⅳ.1 Dispersion Function129
Ⅳ.2 H-Function,Action,and Integral Representation133
Ⅳ.3 Momentum Compaction Factor136
Ⅳ.4 Dispersion Suppression and Dispersion Matching139
Ⅳ.5 Achromat Transport Systems141
Ⅳ.6 Transport Notation143
Ⅳ.7 Experimental Measurements of Dispersion Function145
Ⅳ.8 Transition Energy Manipulation146
A.γT jump schemes146
B.Flexible momentum compaction(FMC)lattices149
C.Other similar FMC modules155
D.FMC in double-bend(DB)lattices156
Ⅳ.9 Minimum〈H〉Modules157
Exercise161
Ⅴ Chromatic Aberration172
Ⅴ.1 Chromaticity Measurement and Correction173
Ⅴ.2 Nonlinear Effects of Chromatic Sextupoles178
Ⅴ.3 Chromatic Aberration and Correction178
Ⅴ.4 Lattice Design Strategy183
Exercise184
Ⅵ Linear Coupling186
Ⅵ.1 The Linear Coupling Hamiltonian186
Ⅵ.2 Effects of an isolated Linear Coupling Resonance189
Ⅵ.3 Experimental Measurement of Linear Coupling193
Ⅵ.4 Linear Coupling Correction with Skew Quadrupoles196
Ⅵ.5 Linear Coupling Using Transfer Matrix Formalism197
Exercise197
Ⅶ Nonlinear Resonances202
Ⅶ.1 Nonlinear Resonances Driven by Sextupoles202
Ⅶ.2 Higher-Order Resonances209
Ⅶ.3 Nonlinear Detuning from Sextupoles211
Ⅶ.4 Betatron Tunes and Nonlinear Resonances212
Exercise213
Ⅷ Collective Instabilities and Landau Damping216
Ⅷ.1 Impedance216
Ⅷ.2 Transverse Wave Modes220
Ⅷ.3 Effect of Wakefield on Transverse Wave221
Ⅷ.4 Frequency Spread and Landau Damping225
Exercise228
Ⅸ Synchro-Betatron Hamiltonian232
Exercise237
3 Synchrotron Motion239
Ⅰ Longitudinal Equation of Motion240
Ⅰ.1 The Synchrotron Hamiltonian244
Ⅰ.2 The Synchrotron Mapping Equation245
Ⅰ.3 Evolution of Synchrotron Phase-Space Ellipse246
Ⅰ.4 Some Practical Examples247
Ⅰ.5 Summary of Synchrotron Equations of Motion248
Exercise249
Ⅱ Adiabatic Synchrotron Motion251
Ⅱ.1 Fixed Points252
Ⅱ.2 Bucket Area253
Ⅱ.3 Small-Amplitude Oscillations and Bunch Area255
Ⅱ.4 Small-Amplitude Synchrotron Motion at the UFP258
Ⅱ.5 Synchrotron Motion for Large-Amplitude Particles259
Ⅱ.6 Experimental Tracking of Synchrotron Motion261
Exercise263
Ⅲ RF Phase and Voltage Modulations268
Ⅲ.1 Normalized Phase-Space Coordinates268
Ⅲ.2 RF Phase Modulation and Parametric Resonances271
Ⅲ.3 Measurements of Synchrotron Phase Modulation277
Ⅲ.4 Effects of Dipole Field Modulation280
Ⅲ.5 RF Voltage Modulation288
Ⅲ.6 Measurement of RF Voltage Modulation295
Exercise297
Ⅳ Nonadiabatic and Nonlinear Synchrotron Motion301
Ⅳ.1 Linear Synchrotron Motion Near Transition Energy302
Ⅳ.2 Nonlinear Synchrotron Motion at γ≈γT305
Ⅳ.3 Beam Manipulation Near Transition Energy308
Ⅳ.4 Synchrotron Motion with Nonlinear Phase Slip Factor309
Ⅳ.5 The QI Dynamical Systems312
Exercise315
Ⅴ Beam Manipulation in Synchrotron Phase Space317
Ⅴ.1 RF Frequency Requirements318
Ⅴ.2 Capture and Acceleration of Proton and Ion Beams320
Ⅴ.3 Bunch Compression and Rotation322
Ⅴ.4 Debunching326
Ⅴ.5 Beam Stacking and Phase Displacement Acceleration326
Ⅴ.6 Double rf Systems327
Ⅴ.7 The Barrier RF Bucket334
Exercise340
Ⅵ Fundamentals of RF Systems343
Ⅵ.1 Pillbox Cavity343
Ⅵ.2 Low Frequency Coaxial Cavities345
Ⅵ.3 Beam Loading353
Ⅵ.4 Beam Loading Compensation and Robinson Instability356
Exercise359
Ⅶ Longitudinal Collective Instabilities362
Ⅶ.1 Longitudinal Spectra363
Ⅶ.2 Collective Microwave Instability in Coasting Beams367
Ⅶ.3 Longitudinal Impedance369
Ⅶ.4 Microwave Single Bunch Instability373
Exercise381
Ⅷ Introduction to Linear Accelerators383
Ⅷ.1 Historical Milestones383
Ⅷ.2 Fundamental Properties of Accelerating Structures387
A.Transit time factor387
B.Shunt impedance388
C.The quality factor Q388
Ⅷ.3 Particle Acceleration by EM Waves389
A.EM waves in a cylindrical wave guide390
B.Phase velocity and group velocity391
C.TM modes in a cylindrical pillbox cavity392
D.Alvarez structure395
E.Loaded wave guide chain and the space harmonics396
F.Standing wave,traveling wave,and coupled cavity linacs399
G.HOMs401
Ⅷ.4 Longitudinal Particle Dynamics in a Linac402
Ⅷ.5 Transverse Beam Dynamics in a Linac407
Exercise410
4 Physics of Electron Storage Rings417
Ⅰ Fields of a Moving Charged Particle422
Ⅰ.1 Non-relativistic Reduction424
Ⅰ.2 Radiation Field for Particles at Relativistic Velocities424
Ⅰ.3 Frequency and Angular Distribution427
Ⅰ.4 Quantum Fluctuation433
Exercise435
Ⅱ Radiation Damping and Excitation437
Ⅱ.1 Damping of Synchrotron Motion438
Ⅱ.2 Damping of Betatron Motion441
Ⅱ.3 Damping Rate Adjustment445
Ⅱ.4 Radiation Excitation and Equilibrium Energy Spread448
Ⅱ.5 Radial Bunch Width and Distribution Function453
Ⅱ.6 Vertical Beam Width455
Ⅱ.7 Radiation Integrals456
Ⅱ.8 Beam Lifetime456
Exercise462
Ⅲ Emittance in Electron Storage Rings466
Ⅲ.1 Emittance of Synchrotron Radiation Lattices467
A.FODO cell lattice467
B.Double-bend achromat(Chasman-Green lattice)469
C.Minimum〈H〉-function lattice473
D.Minimizing emittance in a combined function DBA475
E.Three-bend achromat476
Ⅲ.2 Insertion Devices478
Ⅲ.3 Beam Physics of High Brightness Storage Rings486
Exercise489
5 Special Topics in Beam Physics497
Ⅰ Free Electron Laser(FEL)498
Ⅰ.1 Small Signal Regime500
Ⅰ.2 Interaction of the Radiation Field with the Beam506
Ⅰ.3 Experiments on High Gain FEL Generation509
Exercise510
Ⅱ Beam-Beam Interaction513
Ⅱ.1 The beam-beam force517
Ⅱ.2 The Coherent Beam-Beam Effects519
Ⅱ.3 Nonlinear Beam-Beam Effects521
Ⅱ.4 Experimental Observations and Numerical Simulations522
Ⅱ.5 Beam-Beam Interaction in Linear Colliders525
Exercise527
A Basics of Classical Mechanics533
Ⅰ Hamiltonian Dynamics533
Ⅰ.1 Canonical Transformations533
Ⅰ.2 Fixed Points534
Ⅰ.3 Poisson Bracket534
Ⅰ.4 Liouville Theorem535
Ⅰ.5 Floquet Theorem536
Ⅱ Stochastic Beam Dynamics537
Ⅱ.1 Central Limit Theorem537
Ⅱ.2 Langevin Equation of Motion538
Ⅱ.3 Stochastic Integration Methods539
Ⅱ.4 Fokker-Planck Equation541
B Numerical Methods and Physical Constants543
Ⅰ Fourier Transform543
Ⅰ.1 Nyquist Sampling Theorem544
Ⅰ.2 Discrete Fourier Transform544
Ⅰ.3 Digital Filtering545
Ⅰ.4 Some Simple Fourier Transforms546
Ⅱ Model Independent Analysis546
Ⅱ.1 Model Independent Analysis547
Ⅱ.2 Independent Component Analysis548
Ⅱ.3 Accelerator Modeling549
Ⅲ Cauchy Theorem and the Dispersion Relation549
Ⅲ.1 Cauchy Integral Formula549
Ⅲ.2 Dispersion Relation550
Ⅳ Useful Handy Formulas551
Ⅳ.1 Generating functions for the Bessel functions551
Ⅳ.2 The Hankel transform551
Ⅳ.3 The complex error function551
Ⅳ.4 A multipole expansion formula552
Ⅳ.5 Cylindrical Coordinates552
Ⅳ.6 Gauss'and Stokes'theorems553
Ⅳ.7 Vector Operation553
Ⅴ Maxwell's equations553
Ⅴ.1 Lorentz Transformation of EM fields554
Ⅴ.2 Cylindrical waveguides554
Ⅴ.3 Voltage Standing Wave Ratio556
Ⅵ Physical Properties and Constants557
Bibliography561
Index563
Symbols and Notations571