图书介绍

HP空间理论PDF|Epub|txt|kindle电子书版本网盘下载

HP空间理论
  • (美)杜 伦(Duren,P.L.)著;苏兆龙等译 著
  • 出版社: 南京工学院出版社
  • ISBN:781023062X
  • 出版时间:1987
  • 标注页数:351页
  • 文件大小:19MB
  • 文件页数:367页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

HP空间理论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 调和函数与次调和函数1

1.1 调和函数1

1.2 Poiss on-St ieltjes积分的边界性质5

1.3 次调和函数9

1.4 Hardy凸性定理11

1.5 从属性14

1.6 极大定理15

习题18

第二章 HP类函数的基本结构20

2.1 边界值20

2.2 零点24

2.3 平均收敛到边界值27

2.4 规范因子分解31

2.5 N+类35

2.6 调和强函数39

习 题40

第三章 应用44

3.1 Poisson积分和H1类44

3.2 边界函数的描述46

3.3 Cauchy积分和Cauch y-S tieltjes积分51

3.4 在|z|≤1内连续的解析函数55

3.5 在保角变换中的应用58

3.6 Fejer—Riesz不等式,Hilbert不等式及Hardy不等式61

3.7 单叶函数66

习题69

第四章 共轭函数72

4.1 M.Riesz定理72

4.2 Kolmogorov定理76

4.3 Zygmund定理78

4.4 三角级数83

4.5 h1类函数的共轭函数86

4.6 p<1的情况:一个反例89

习题93

第五章 平均增长和光滑性96

5.1 光滑类96

5.2 边界函数的光滑性99

5.3 函数及其导数的增长109

5.4 关于共轭函数的进一步讨论113

5.5 平均增长的比较115

5.6 导函数属于HP类的函数121

习 题123

第六章 Taylor系数128

6.1 Hau sdor f f-Young不等式128

6.2 Ha rdy和Littlewood的定理130

6.3 p≤1的情况136

6.4 乘子137

习题147

第七章 将H P类看作为线性空间151

7.1 商空间和零化子151

7.2 线性泛函的表示154

7.3 Beurling逼近定理159

7.4 在H P空间(0<p<1)上的线性泛函158

7.5 不存在Ha hn-B anach定理164

7.6 极值点170

习题174

第八章 极值问题177

8.1 极值问题及其对偶问题177

8.2 解的唯一性181

8.3 p=1时的反例183

8.4 有理核187

8.5 例192

习题197

第九章 插值理论202

9.1 通用插值序列202

9.2 主要定理的证明204

9.3 p<1时的证明210

9.4 均匀分散序列212

9.5 Carleson定理214

习题224

第十章 一般区域上的HF空间227

10.1 单连通区域227

10.2 具有可求长边界的Jordan区域230

10.3 Smirnov区域234

10.4 非Smirnov型区域239

10.5 多连通区域242

习题247

第十一章 半平面上的HP空间251

11.1 次调和函数251

11.2 边界性质253

11.3 规范因子分解257

11.4 Cauchy积分260

11.5 Fourier变换261

习题264

第十二章 日冕定理266

12.1 极大理想266

12.2 插值和曰冕定理268

12.3 调和测度275

12.4 围道Г的构造280

12.5 Г的弧长285

习题289

附录A Redmacher函数291

附录B 极大定理304

名词对照与索引310

参考文献318

热门推荐