图书介绍
Civil Avionics SystemsPDF|Epub|txt|kindle电子书版本网盘下载
![Civil Avionics Systems](https://www.shukui.net/cover/21/31810917.jpg)
- Ian Moir 著
- 出版社: Wiley
- ISBN:
- 出版时间:2003
- 标注页数:561页
- 文件大小:83MB
- 文件页数:604页
- 主题词:
PDF下载
下载说明
Civil Avionics SystemsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Advances since 20031
1.2 Comparison of Boeing and Airbus Solutions2
1.3 Outline of Book Content2
1.3.1 Enabling Technologies and Techniques3
1.3.2 Functional Avionics Systems4
1.3.3 The Flight Deck4
1.4 The Appendices4
2 Avionics Technology7
2.1 Introduction7
2.2 Avionics Technology Evolution8
2.2.1 Introduction8
2.2.2 Technology Evolution8
2.3 Avionics Computing11
2.3.1 The Nature of an Avionics Computer11
2.3.2 Resolution (Digitisation)13
2.3.3 The Sampling Frequency (Refresh Rate)14
2.4 Digital Systems Input and Output19
2.4.1 Introduction19
2.4.2 Analogue to Digital Process20
2.4.3 Sampling Rate22
2.4.4 Digital to Analogue Process23
2.4.5 Analogue Signal Conditioning25
2.4.6 Input Signal Protection and Filtering27
2.4.7 Analogue Signal Types29
2.5 Binary Arithmetic29
2.5.1 Binary Notations29
2.5.2 Binary Addition,Subtraction,Multiplication and Division32
2.5.3 The Arithmetic Logic Unit32
2.6 The Central Processing Unit (CPU)34
2.6.1 CPU Instruction Format35
2.6.2 Instruction Execution Sequence35
2.6.3 Extended Operand Addressing Modes42
2.7 Software43
2.7.1 Software Introduction43
2.7.2 Assemblers and Compilers43
2.7.3 Software Engineering44
2.7.4 Software Design Process Assurance45
2.7.5 Languages47
2.7.6 Object-Oriented Design49
2.7.7 Auto-code Generation50
2.7.8 Real-Time Operating System (RTOS)51
2.8 Microprocessors53
2.8.1 Moore’s Law53
2.8.2 Significant Microprocessors used in Aerospace Applications54
2.8.3 CPU Cache57
2.8.4 Microcontrollers58
2.8.5 Rock’s Law59
2.9 Memory Technologies59
2.9.1 Desired Avionics Memory Attributes60
2.9.2 Available Memory Technology Attributes60
2.9.3 Memory Device Summary64
2.9.4 Memory Hierarchy64
2.10 Application-Specific Integrated Circuits (ASICs)64
2.10.1 Main Types of ASICs64
2.10.2 Field Programmable Gate Array (FPGA)66
2.10.3 Semi-custom Standard Cell Design ASIC68
2.10.4 Design Tools68
2.10.5 RTCA-DO-254/ED 8069
2.11 Integrated Circuits70
2.11.1 Logic Functions70
2.11.2 The MOS Field Effect Transistor (MOSFET)70
2.11.3 IC Fabrication70
2.12 Integrated Circuit Packaging73
2.12.1 Wafer Probe and Test74
2.12.2 Wafer Separation and Die Attachment74
2.12.3 Wire Bonding75
2.12.4 Packaging75
References77
3 Data Bus Networks79
3.1 Introduction79
3.2 Digital Data Bus Basics80
3.2.1 Data Bus Overview80
3.2.2 Bit Encoding82
3.2.3 Attributes83
3.2.4 Transmission Classes83
3.2.5 Topologies83
3.2.6 Transmission Rates84
3.3 Transmission Protocols84
3.3.1 Transmission Protocols Overview84
3.3.2 Time-Slot Allocation Protocol86
3.3.3 Command/Response Protocol87
3.3.4 Token Passing Protocol88
3.3.5 Contention Protocol88
3.4 ARINC 42988
3.4.1 ARINC 429 Overview88
3.4.2 ARINC 429 Architecture Realisation90
3.5 MIL-STD-1553B91
3.5.1 MIL-STD-1553B Overview91
3.5.2 MIL-STD-1553B Word Formats92
3.5.3 Bus Controller to Remote Terminal (BC-RT) Protocol94
3.5.4 Remote Terminal to Bus Controller (RT-BC) Protocol94
3.5.5 Remote Terminal to Remote Terminal (RT-RT) Protocol95
3.5.6 Broadcast Protocol95
3.5.7 Error Management95
3.6 ARINC 62997
3.6.1 ARINC 629 Overview97
3.6.2 ARINC 629 Protocol97
3.6.3 ARINC 629 Bus Coupler99
3.6.4 ARINC 629 Architecture Realisation99
3.7 ARINC 664 Part 7100
3.7.1 ARINC 664 Overview100
3.7.2 Ethernet Frame Format101
3.7.3 Network Topology101
3.7.4 Contention Avoidance103
3.7.5 Virtual Links105
3.7.6 Protocol107
3.7.7 SummaRY109
3.7.8 Cables109
3.8 CANbus110
3.8.1 CANbus Overview110
3.8.2 CANbus Message Formats110
3.8.3 CANbus Variants112
3.9 Time Triggered Protocol113
3.10 Fibre-optic Data Communications113
3.10.1 Attributes of Fibre-optic Data Transmission113
3.10.2 Physical Implementation114
3.11 Data Bus Summary115
3.11.1 Data Bus Overview115
3.11.2 Contrasting Traffic Management Techniques117
References118
4 System Safety119
4.1 Introduction119
4.2 Flight Safety120
4.2.1 Introduction120
4.2.2 Flight Safety Overview120
4.2.3 Accident Causes124
4.3 System Safety Assessment124
4.3.1 Introduction124
4.3.2 Key Agencies,Documents and Guidelines125
4.3.3 Failure Classification126
4.3.4 In-Service Experience127
4.3.5 Safety Assessment Processes127
4.4 Reliability128
4.4.1 Introduction128
4.4.2 Failure Mechanisms128
4.4.3 The Relationship between Probability and Mean Time between Failures130
4.4.4 Assessment of Failure Probability132
4.4.5 Reliability Management133
4.5 Availability134
4.5.1 Introduction134
4.5.2 Classic Probability Theory135
4.5.3 Simplex Architecture135
4.5.4 Triplex Architecture136
4.5.5 Triplex Architecture plus Backup136
4.6 Integrity138
4.6.1 Built-in-Test139
4.6.2 Cross-Monitoring140
4.7 Redundancy141
4.7.1 Simplex Architecture142
4.7.2 Duplex Architecture142
4.7.3 Dual Command:Monitor Architecture143
4.7.4 Triplex Architecture145
4.7.5 Quadruplex Architecture146
4.7.6 Summary147
4.8 Analysis Methods148
4.8.1 Top-Down Methods148
4.8.2 Bottom-Up Methods149
4.8.3 Lighting System Example149
4.9 Other Considerations151
4.9.1 Exposure Time (Time at Risk)151
4.9.2 Cascade and Common Mode Faults152
4.9.3 Dissimilarity153
4.9.4 Segregation and Partitioning155
4.9.5 Dispatch Availability156
References157
5 Avionics Architectures159
5.1 Introduction159
5.2 Avionics Architecture Evolution159
5.2.1 Overview of Architecture Evolution159
5.2.2 Distributed Analogue Architecture161
5.2.3 Distributed Digital Architecture162
5.2.4 Federated Digital Architecture164
5.2.5 Integrated Modular Avionics166
5.2.6 Open System Standards169
5.3 Avionic Systems Domains169
5.3.1 The Aircraft as a System of Systems169
5.3.2 ATA Classification171
5.4 Avionics Architecture Examples172
5.4.1 The Manifestations of IMA172
5.4.2 The Airbus A320 Avionics Architecture173
5.4.3 The Boeing 777 Avionics Architecture174
5.4.4 Honeywell EPIC Architecture179
5.4.5 The Airbus A380 and A350180
5.4.6 The Boeing 787184
5.5 IMA Design Principles188
5.6 The Virtual System189
5.6.1 Introduction to Virtual Mapping189
5.6.2 Implementation Example:Airbus A380191
5.6.3 Implementation Example:Boeing 787193
5.7 Partitioning194
5.8 IMA Fault Tolerance195
5.8.1 Fault Tolerance Principles195
5.8.2 Data Integrity196
5.8.3 Platform Health Management197
5.9 Network Definition197
5.10 Certification198
5.10.1 IMA Certification Philosophy198
5.10.2 Platform Acceptance199
5.10.3 Hosted Function Acceptance200
5.10.4 Cost of Change200
5.10.5 Configuration Management201
5.11 IMA Standards201
References203
6 Systems Development205
6.1 Introduction205
6.1.1 Systems Design205
6.1.2 Development Processes206
6.2 System Design Guidelines206
6.2.1 Key Agencies and Documentation206
6.2.2 Design Guidelines and Certification Techniques207
6.2.3 Guidelines for Development of Civil Aircraft and Systems - SAE ARP 4754A208
6.2.4 Guidelines and Methods for Conducting the Safety Assessment - SAE ARP 4761208
6.2.5 Software Considerations - RTCA DO-178B209
6.2.6 Hardware Development - RTCA DO-254209
6.2.7 Integrated Modular Avionics - RTCA DO-297209
6.2.8 Equivalence of US and European Specifications210
6.3 Interrelationship of Design Processes210
6.3.1 Functional Hazard Assessment (FHA)210
6.3.2 Preliminary System Safety Assessment (PSSA)212
6.3.3 System Safety Assessment (SSA)213
6.3.4 Common Cause Analysis (CCA)213
6.4 Requirements Capture and Analysis213
6.4.1 Top-Down Approach214
6.4.2 Bottom-Up Approach214
6.4.3 Requirements Capture Example215
6.5 Development Processes217
6.5.1 The Product Life-Cycle217
6.5.2 Concept Phase218
6.5.3 Definition Phase219
6.5.4 Design Phase220
6.5.5 Build Phase221
6.5.6 Test Phase222
6.5.7 Operate Phase223
6.5.8 Disposal or Refurbish Phase223
6.6 Development Programme224
6.6.1 Typical Development Programme224
6.6.2 ‘V’ Diagram226
6.7 Extended Operations Requirements226
6.7.1 ETOPS Requirements226
6.7.2 Equipment Requirements228
6.8 ARINC Specifications and Design Rigour229
6.8.1 ARINC 400 Series229
6.8.2 ARINC 500 Series229
6.8.3 ARINC 600 Series229
6.8.4 ARINC 700 Series230
6.8.5 ARINC 800 Series230
6.8.6 ARINC 900 Series230
6.9 Interface Control231
6.9.1 Introduction231
6.9.2 Interface Control Document231
6.9.3 Aircraft-Level Data-Bus Data231
6.9.4 System Internal Data-Bus Data233
6.9.5 Internal System Input/Output Data233
6.9.6 Fuel Component Interfaces233
References233
7 Electrical Systems235
7.1 Electrical Systems Overview235
7.1.1 Introduction235
7.1.2 Wider Development Trends236
7.1.3 Typical Civil Electrical System238
7.2 Electrical Power Generation239
7.2.1 Generator Control Function239
7.2.2 DC System Generation Control240
7.2.3 AC Power Generation Control242
7.3 Power Distribution and Protection248
7.3.1 Electrical Power System Layers248
7.3.2 Electrical System Configuration248
7.3.3 Electrical Load Protection250
7.3.4 Power Conversion253
7.4 Emergency Power254
7.4.1 Ram Air Turbine255
7.4.2 Permanent Magnet Generators256
7.4.3 Backup Systems257
7.4.4 Batteries258
7.5 Power System Architectures259
7.5.1 Airbus A320 Electrical System259
7.5.2 Boeing 777 Electrical System261
7.5.3 Airbus A380 Electrical System264
7.5.4 Boeing 787 Electrical System265
7.6 Aircraft Wiring268
7.6.1 Aircraft Breaks269
7.6.2 Wiring Bundle Definition270
7.6.3 Wiring Routing271
7.6.4 Wiring Sizing272
7.6.5 Aircraft Electrical Signal Types272
7.6.6 Electrical Segregation274
7.6.7 The Nature of Aircraft Wiring and Connectors274
7.6.8 Used of Twisted Pairs and Quads275
7.7 Electrical Installation276
7.7.1 Temperature and Power Dissipation278
7.7.2 Electromagnetic Interference278
7.7.3 Lightning Strikes280
7.8 Bonding and Earthing280
7.9 Signal Conditioning282
7.9.1 Signal Types282
7.9.2 Signal Conditioning283
7.10 Central Maintenance Systems284
7.10.1 Airbus A330/340 Central Maintenance System285
7.10.2 Boeing 777 Central Maintenance Computing System288
References290
Further Reading290
8 Sensors291
8.1 Introduction291
8.2 Air Data Sensors292
8.2.1 Air Data Parameters292
8.2.2 Pressure Sensing292
8.2.3 Temperature Sensing292
8.2.4 Use of Pressure Data294
8.2.5 Pressure Datum Settings295
8.2.6 Air Data Computers (ADCs)297
8.2.7 Airstream Direction Detectors299
8.2.8 Total Aircraft Pitot-Static System300
8.3 Magnetic Sensors301
8.3.1 Introduction301
8.3.2 Magnetic Field Components302
8.3.3 Magnetic Variation303
8.3.4 Magnetic Heading Reference System305
8.4 Inertial Sensors306
8.4.1 Introduction306
8.4.2 Position Gyroscopes306
8.4.3 Rate Gyroscopes306
8.4.4 Accelerometers308
8.4.5 Inertial Reference Set309
8.4.6 Platform Alignment312
8.4.7 Gimballed Platform315
8.4.8 Strap-Down System317
8.5 Combined Air Data and Inertial317
8.5.1 Introduction317
8.5.2 Evolution of Combined Systems317
8.5.3 Boeing 777 Example319
8.5.4 ADIRS Data-Set320
8.5.5 Further System Integration320
8.6 Radar Sensors323
8.6.1 Radar Altimeter323
8.6.2 Weather Radar324
References327
9 Communications and Navigation Aids329
9.1 Introduction329
9.1.1 Introduction and RF Spectrum329
9.1.2 Equipment331
9.1.3 Antennae332
9.2 Communications332
9.2.1 Simple Modulation Techniques332
9.2.2 HF Communications335
9.2.3 VHF Communications337
9.2.4 SATCOM339
9.2.5 Air Traffic Control (ATC) Transponder342
9.2.6 Traffic Collision Avoidance System (TCAS)345
9.3 Ground-Based Navigation Aids347
9.3.1 Introduction347
9.3.2 Non-Directional Beacon348
9.3.3 VHF Omni-Range348
9.3.4 Distance Measuring Equipment348
9.3.5 TACAN350
9.3.6 VOR/TAC350
9.4 Instrument Landing Systems350
9.4.1 Overview350
9.4.2 Instrument Landing System351
9.4.3 Microwave Landing System354
9.4.4 GNSS Based Systems354
9.5 Space-Based Navigation Systems354
9.5.1 Introduction354
9.5.2 Global Positioning System355
9.5.3 GLONASS358
9.5.4 Galileo359
9.5.5 COMPASS359
9.5.6 Differential GPS360
9.5.7 Wide Area Augmentation System (WAAS/SBAS)360
9.5.8 Local Area Augmentation System (LAAS/LBAS)360
9.6 Communications Control Systems362
References363
10 Flight Control Systems365
10.1 Principles of Flight Control365
10.1.1 Frame of Reference365
10.1.2 Typical Flight Control Surfaces366
10.2 Flight Control Elements368
10.2.1 Interrelationship of Flight Control Functions368
10.2.2 Flight Crew Interface370
10.3 Flight Control Actuation371
10.3.1 Conventional Linear Actuation372
10.3.2 Linear Actuation with Manual and Autopilot Inputs372
10.3.3 Screwjack Actuation373
10.3.4 Integrated Actuation Package374
10.3.5 FBW and Direct Electrical Link376
10.3.6 Electrohydrostatic Actuation (EHA)377
10.3.7 Electromechanical Actuation (EMA)378
10.3.8 Actuator Applications379
10.4 Principles of Fly-By-Wire379
10.4.1 Fly-By-Wire Overview379
10.4.2 Typical Operating Modes380
10.4.3 Boeing and Airbus Philosophies382
10.5 Boeing 777 Flight Control System383
10.5.1 Top Level Primary Flight Control System383
10.5.2 Actuator Control Unit Interface384
10.5.3 Pitch and Yaw Channel Overview386
10.5.4 Channel Control Logic387
10.5.5 Overall System Integration389
10.6 Airbus Flight Control Systems389
10.6.1 Airbus FBW Evolution389
10.6.2 A320 FBW System391
10.6.3 A330/340 FBW System393
10.6.4 A380 FBW System394
10.7 Autopilot Flight Director System396
10.7.1 Autopilot Principles396
10.7.2 Interrelationship with the Flight Deck398
10.7.3 Automatic Landing400
10.8 Flight Data Recorders401
10.8.1 Principles of Flight Data Recording401
10.8.2 Data Recording Environments403
10.8.3 Future Requirements403
References404
11 Navigation Systems405
11.1 Principles of Navigation405
11.1.1 Basic Navigation405
11.1.2 Navigation using Ground-Based Navigation Aids407
11.1.3 Navigation using Air Data and Inertial Navigation408
11.1.4 Navigation using Global Navigation Satellite Systems410
11.1.5 Flight Technical Error - Lateral Navigation411
11.1.6 Flight Technical Error - Vertical Navigation412
11.2 Flight Management System413
11.2.1 Principles of Flight Management Systems (FMS)413
11.2.2 FMS Crew Interface - Navigation Display414
11.2.3 FMS Crew Interface - Control and Display Unit417
11.2.4 FMS Functions420
11.2.5 FMS Procedures421
11.2.6 Standard Instrument Departure423
11.2.7 En-Route Procedures423
11.2.8 Standard Terminal Arrival Routes424
11.2.9 ILS Procedures427
11.2.10 Typical FMS Architecture427
11.3 Electronic Flight Bag427
11.3.1 EFB Functions427
11.3.2 EFB Implementation429
11.4 Air Traffic Management430
11.4.1 Aims of Air Traffic Management430
11.4.2 Communications,Navigation,Surveillance430
11.4.3 NextGen431
11.4.4 Single European Sky ATM Research (SESAR)432
11.5 Performance-Based Navigation433
11.5.1 Performance-Based Navigation Definition433
11.5.2 Area Navigation (RNAV)434
11.5.3 Required Navigation Performance (RNP)438
11.5.4 Precision Approaches440
11.6 Automatic Dependent Surveillance - Broadcast442
11.7 Boeing and Airbus Implementations442
11.7.1 Boeing Implementation442
11.7.2 Airbus Implementation444
11.8 Terrain Avoidance Warning System (TAWS)444
References447
Historical References (in Chronological Order)447
12 Flight Deck Displays449
12.1 Introduction449
12.2 First Generation Flight Deck:the Electromagnetic Era450
12.2.1 Embryonic Primary Flight Instruments450
12.2.2 The Early Pioneers451
12.2.3 The ‘Classic’ Electromechanical Flight Deck453
12.3 Second Generation Flight Deck:the Electro-Optic Era455
12.3.1 The Advanced Civil Flight Deck455
12.3.2 The Boeing 757 and 767456
12.3.3 The Airbus A320,A330 and A340457
12.3.4 The Boeing 747-400 and 777458
12.3.5 The Airbus A380460
12.3.6 The Boeing 787461
12.3.7 The Airbus A350462
12.4 Third Generation:the Next Generation Flight Deck463
12.4.1 Loss of Situational Awareness in Adverse Operational Conditions463
12.4.2 Research Areas463
12.4.3 Concepts464
12.5 Electronic Centralised Aircraft Monitor (ECAM) System465
12.5.1 ECAM Scheduling465
12.5.2 ECAM Moding465
12.5.3 ECAM Pages466
12.5.4 Qantas Flight QF32466
12.5.5 The Boeing Engine Indicating and Crew Alerting System (EICAS)468
12.6 Standby Instruments468
12.7 Head-Up Display Visual Guidance System (HVGS)469
12.7.1 Introduction to Visual Guidance Systems469
12.7.2 HVGS on Civil Transport Aircraft470
12.7.3 HVGS Installation470
12.7.4 HVGS Symbology471
12.8 Enhanced and Synthetic Vision Systems473
12.8.1 Overview473
12.8.2 EVS,EFVS and SVS Architecture Diagrams474
12.8.3 Minimum Aviation System Performance Standard (MASPS)474
12.8.4 Enhanced Vision Systems (EVS)474
12.8.5 Enhanced Flight Vision Systems (EFVS)478
12.8.6 Synthetic Vision Systems (SVS)481
12.8.7 Combined Vision Systems484
12.9 Display System Architectures486
12.9.1 Airworthiness Regulations486
12.9.2 Display Availability and Integrity486
12.9.3 Display System Functional Elements487
12.9.4 Dumb Display Architecture488
12.9.5 Semi-Smart Display Architecture490
12.9.6 Fully Smart (Integrated) Display Architecture490
12.10 Display Usability491
12.10.1 Regulatory Requirements491
12.10.2 Display Format and Symbology Guidelines492
12.10.3 Flight Deck Geometry492
12.10.4 Legibility:Resolution,Symbol Line Width and Sizing494
12.10.5 Colour494
12.10.6 Ambient Lighting Conditions496
12.11 Display Technologies498
12.11.1 Active Matrix Liquid Crystal Displays (AMLCD)499
12.11.2 Plasma Panels501
12.11.3 Organic Light-Emitting Diodes (O-LED)501
12.11.4 Electronic Paper (e-paper)502
12.11.5 Micro-Projection Display Technologies503
12.11.6 Head-Up Display Technologies504
12.11.7 Inceptors505
12.12 Flight Control Inceptors506
12.12.1 Handling Qualities507
12.12.2 Response Types507
12.12.3 Envelope Protection508
12.12.4 Inceptors508
References509
13 Military Aircraft Adaptations511
13.1 Introduction511
13.2 Avionic and Mission System Interface512
13.2.1 Navigation and Flight Management515
13.2.2 Navigation Aids516
13.2.3 Flight Deck Displays517
13.2.4 Communications518
13.2.5 Aircraft Systems518
13.3 Applications519
13.3.1 Green Aircraft Conversion519
13.3.2 Personnel,Material and Vehicle Transport521
13.3.3 Air-to-Air Refuelling521
13.3.4 Maritime Patrol522
13.3.5 Airborne Early Warning528
13.3.6 Ground Surveillance528
13.3.7 Electronic Warfare530
13.3.8 Flying Classroom530
13.3.9 Range Target/Safety530
Reference531
Further Reading531
Appendices533
Introduction to Appendices533
Appendix A:Safety Analysis - Flight Control System534
A.1 Flight Control System Architecture534
A.2 Dependency Diagram535
A.3 Fault Tree Analysis537
Appendix B:Safety Analysis - Electronic Flight Instrument System539
B.1 Electronic Flight Instrument System Architecture539
B.2 Fault Tree Analysis540
Appendix C:Safety Analysis - Electrical System543
C.1 Electrical System Architecture543
C.2 Fault Tree Analysis543
Appendix D:Safety Analysis - Engine Control System546
D.1 Factors Resulting in an In-Flight Shut Down546
D.2 Engine Control System Architecture546
D.3 Markov Analysis548
Simplified Example (all failure rates per flight hour)549
Index551