图书介绍

Civil Avionics SystemsPDF|Epub|txt|kindle电子书版本网盘下载

Civil Avionics Systems
  • Ian Moir 著
  • 出版社: Wiley
  • ISBN:
  • 出版时间:2003
  • 标注页数:561页
  • 文件大小:83MB
  • 文件页数:604页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Civil Avionics SystemsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Advances since 20031

1.2 Comparison of Boeing and Airbus Solutions2

1.3 Outline of Book Content2

1.3.1 Enabling Technologies and Techniques3

1.3.2 Functional Avionics Systems4

1.3.3 The Flight Deck4

1.4 The Appendices4

2 Avionics Technology7

2.1 Introduction7

2.2 Avionics Technology Evolution8

2.2.1 Introduction8

2.2.2 Technology Evolution8

2.3 Avionics Computing11

2.3.1 The Nature of an Avionics Computer11

2.3.2 Resolution (Digitisation)13

2.3.3 The Sampling Frequency (Refresh Rate)14

2.4 Digital Systems Input and Output19

2.4.1 Introduction19

2.4.2 Analogue to Digital Process20

2.4.3 Sampling Rate22

2.4.4 Digital to Analogue Process23

2.4.5 Analogue Signal Conditioning25

2.4.6 Input Signal Protection and Filtering27

2.4.7 Analogue Signal Types29

2.5 Binary Arithmetic29

2.5.1 Binary Notations29

2.5.2 Binary Addition,Subtraction,Multiplication and Division32

2.5.3 The Arithmetic Logic Unit32

2.6 The Central Processing Unit (CPU)34

2.6.1 CPU Instruction Format35

2.6.2 Instruction Execution Sequence35

2.6.3 Extended Operand Addressing Modes42

2.7 Software43

2.7.1 Software Introduction43

2.7.2 Assemblers and Compilers43

2.7.3 Software Engineering44

2.7.4 Software Design Process Assurance45

2.7.5 Languages47

2.7.6 Object-Oriented Design49

2.7.7 Auto-code Generation50

2.7.8 Real-Time Operating System (RTOS)51

2.8 Microprocessors53

2.8.1 Moore’s Law53

2.8.2 Significant Microprocessors used in Aerospace Applications54

2.8.3 CPU Cache57

2.8.4 Microcontrollers58

2.8.5 Rock’s Law59

2.9 Memory Technologies59

2.9.1 Desired Avionics Memory Attributes60

2.9.2 Available Memory Technology Attributes60

2.9.3 Memory Device Summary64

2.9.4 Memory Hierarchy64

2.10 Application-Specific Integrated Circuits (ASICs)64

2.10.1 Main Types of ASICs64

2.10.2 Field Programmable Gate Array (FPGA)66

2.10.3 Semi-custom Standard Cell Design ASIC68

2.10.4 Design Tools68

2.10.5 RTCA-DO-254/ED 8069

2.11 Integrated Circuits70

2.11.1 Logic Functions70

2.11.2 The MOS Field Effect Transistor (MOSFET)70

2.11.3 IC Fabrication70

2.12 Integrated Circuit Packaging73

2.12.1 Wafer Probe and Test74

2.12.2 Wafer Separation and Die Attachment74

2.12.3 Wire Bonding75

2.12.4 Packaging75

References77

3 Data Bus Networks79

3.1 Introduction79

3.2 Digital Data Bus Basics80

3.2.1 Data Bus Overview80

3.2.2 Bit Encoding82

3.2.3 Attributes83

3.2.4 Transmission Classes83

3.2.5 Topologies83

3.2.6 Transmission Rates84

3.3 Transmission Protocols84

3.3.1 Transmission Protocols Overview84

3.3.2 Time-Slot Allocation Protocol86

3.3.3 Command/Response Protocol87

3.3.4 Token Passing Protocol88

3.3.5 Contention Protocol88

3.4 ARINC 42988

3.4.1 ARINC 429 Overview88

3.4.2 ARINC 429 Architecture Realisation90

3.5 MIL-STD-1553B91

3.5.1 MIL-STD-1553B Overview91

3.5.2 MIL-STD-1553B Word Formats92

3.5.3 Bus Controller to Remote Terminal (BC-RT) Protocol94

3.5.4 Remote Terminal to Bus Controller (RT-BC) Protocol94

3.5.5 Remote Terminal to Remote Terminal (RT-RT) Protocol95

3.5.6 Broadcast Protocol95

3.5.7 Error Management95

3.6 ARINC 62997

3.6.1 ARINC 629 Overview97

3.6.2 ARINC 629 Protocol97

3.6.3 ARINC 629 Bus Coupler99

3.6.4 ARINC 629 Architecture Realisation99

3.7 ARINC 664 Part 7100

3.7.1 ARINC 664 Overview100

3.7.2 Ethernet Frame Format101

3.7.3 Network Topology101

3.7.4 Contention Avoidance103

3.7.5 Virtual Links105

3.7.6 Protocol107

3.7.7 SummaRY109

3.7.8 Cables109

3.8 CANbus110

3.8.1 CANbus Overview110

3.8.2 CANbus Message Formats110

3.8.3 CANbus Variants112

3.9 Time Triggered Protocol113

3.10 Fibre-optic Data Communications113

3.10.1 Attributes of Fibre-optic Data Transmission113

3.10.2 Physical Implementation114

3.11 Data Bus Summary115

3.11.1 Data Bus Overview115

3.11.2 Contrasting Traffic Management Techniques117

References118

4 System Safety119

4.1 Introduction119

4.2 Flight Safety120

4.2.1 Introduction120

4.2.2 Flight Safety Overview120

4.2.3 Accident Causes124

4.3 System Safety Assessment124

4.3.1 Introduction124

4.3.2 Key Agencies,Documents and Guidelines125

4.3.3 Failure Classification126

4.3.4 In-Service Experience127

4.3.5 Safety Assessment Processes127

4.4 Reliability128

4.4.1 Introduction128

4.4.2 Failure Mechanisms128

4.4.3 The Relationship between Probability and Mean Time between Failures130

4.4.4 Assessment of Failure Probability132

4.4.5 Reliability Management133

4.5 Availability134

4.5.1 Introduction134

4.5.2 Classic Probability Theory135

4.5.3 Simplex Architecture135

4.5.4 Triplex Architecture136

4.5.5 Triplex Architecture plus Backup136

4.6 Integrity138

4.6.1 Built-in-Test139

4.6.2 Cross-Monitoring140

4.7 Redundancy141

4.7.1 Simplex Architecture142

4.7.2 Duplex Architecture142

4.7.3 Dual Command:Monitor Architecture143

4.7.4 Triplex Architecture145

4.7.5 Quadruplex Architecture146

4.7.6 Summary147

4.8 Analysis Methods148

4.8.1 Top-Down Methods148

4.8.2 Bottom-Up Methods149

4.8.3 Lighting System Example149

4.9 Other Considerations151

4.9.1 Exposure Time (Time at Risk)151

4.9.2 Cascade and Common Mode Faults152

4.9.3 Dissimilarity153

4.9.4 Segregation and Partitioning155

4.9.5 Dispatch Availability156

References157

5 Avionics Architectures159

5.1 Introduction159

5.2 Avionics Architecture Evolution159

5.2.1 Overview of Architecture Evolution159

5.2.2 Distributed Analogue Architecture161

5.2.3 Distributed Digital Architecture162

5.2.4 Federated Digital Architecture164

5.2.5 Integrated Modular Avionics166

5.2.6 Open System Standards169

5.3 Avionic Systems Domains169

5.3.1 The Aircraft as a System of Systems169

5.3.2 ATA Classification171

5.4 Avionics Architecture Examples172

5.4.1 The Manifestations of IMA172

5.4.2 The Airbus A320 Avionics Architecture173

5.4.3 The Boeing 777 Avionics Architecture174

5.4.4 Honeywell EPIC Architecture179

5.4.5 The Airbus A380 and A350180

5.4.6 The Boeing 787184

5.5 IMA Design Principles188

5.6 The Virtual System189

5.6.1 Introduction to Virtual Mapping189

5.6.2 Implementation Example:Airbus A380191

5.6.3 Implementation Example:Boeing 787193

5.7 Partitioning194

5.8 IMA Fault Tolerance195

5.8.1 Fault Tolerance Principles195

5.8.2 Data Integrity196

5.8.3 Platform Health Management197

5.9 Network Definition197

5.10 Certification198

5.10.1 IMA Certification Philosophy198

5.10.2 Platform Acceptance199

5.10.3 Hosted Function Acceptance200

5.10.4 Cost of Change200

5.10.5 Configuration Management201

5.11 IMA Standards201

References203

6 Systems Development205

6.1 Introduction205

6.1.1 Systems Design205

6.1.2 Development Processes206

6.2 System Design Guidelines206

6.2.1 Key Agencies and Documentation206

6.2.2 Design Guidelines and Certification Techniques207

6.2.3 Guidelines for Development of Civil Aircraft and Systems - SAE ARP 4754A208

6.2.4 Guidelines and Methods for Conducting the Safety Assessment - SAE ARP 4761208

6.2.5 Software Considerations - RTCA DO-178B209

6.2.6 Hardware Development - RTCA DO-254209

6.2.7 Integrated Modular Avionics - RTCA DO-297209

6.2.8 Equivalence of US and European Specifications210

6.3 Interrelationship of Design Processes210

6.3.1 Functional Hazard Assessment (FHA)210

6.3.2 Preliminary System Safety Assessment (PSSA)212

6.3.3 System Safety Assessment (SSA)213

6.3.4 Common Cause Analysis (CCA)213

6.4 Requirements Capture and Analysis213

6.4.1 Top-Down Approach214

6.4.2 Bottom-Up Approach214

6.4.3 Requirements Capture Example215

6.5 Development Processes217

6.5.1 The Product Life-Cycle217

6.5.2 Concept Phase218

6.5.3 Definition Phase219

6.5.4 Design Phase220

6.5.5 Build Phase221

6.5.6 Test Phase222

6.5.7 Operate Phase223

6.5.8 Disposal or Refurbish Phase223

6.6 Development Programme224

6.6.1 Typical Development Programme224

6.6.2 ‘V’ Diagram226

6.7 Extended Operations Requirements226

6.7.1 ETOPS Requirements226

6.7.2 Equipment Requirements228

6.8 ARINC Specifications and Design Rigour229

6.8.1 ARINC 400 Series229

6.8.2 ARINC 500 Series229

6.8.3 ARINC 600 Series229

6.8.4 ARINC 700 Series230

6.8.5 ARINC 800 Series230

6.8.6 ARINC 900 Series230

6.9 Interface Control231

6.9.1 Introduction231

6.9.2 Interface Control Document231

6.9.3 Aircraft-Level Data-Bus Data231

6.9.4 System Internal Data-Bus Data233

6.9.5 Internal System Input/Output Data233

6.9.6 Fuel Component Interfaces233

References233

7 Electrical Systems235

7.1 Electrical Systems Overview235

7.1.1 Introduction235

7.1.2 Wider Development Trends236

7.1.3 Typical Civil Electrical System238

7.2 Electrical Power Generation239

7.2.1 Generator Control Function239

7.2.2 DC System Generation Control240

7.2.3 AC Power Generation Control242

7.3 Power Distribution and Protection248

7.3.1 Electrical Power System Layers248

7.3.2 Electrical System Configuration248

7.3.3 Electrical Load Protection250

7.3.4 Power Conversion253

7.4 Emergency Power254

7.4.1 Ram Air Turbine255

7.4.2 Permanent Magnet Generators256

7.4.3 Backup Systems257

7.4.4 Batteries258

7.5 Power System Architectures259

7.5.1 Airbus A320 Electrical System259

7.5.2 Boeing 777 Electrical System261

7.5.3 Airbus A380 Electrical System264

7.5.4 Boeing 787 Electrical System265

7.6 Aircraft Wiring268

7.6.1 Aircraft Breaks269

7.6.2 Wiring Bundle Definition270

7.6.3 Wiring Routing271

7.6.4 Wiring Sizing272

7.6.5 Aircraft Electrical Signal Types272

7.6.6 Electrical Segregation274

7.6.7 The Nature of Aircraft Wiring and Connectors274

7.6.8 Used of Twisted Pairs and Quads275

7.7 Electrical Installation276

7.7.1 Temperature and Power Dissipation278

7.7.2 Electromagnetic Interference278

7.7.3 Lightning Strikes280

7.8 Bonding and Earthing280

7.9 Signal Conditioning282

7.9.1 Signal Types282

7.9.2 Signal Conditioning283

7.10 Central Maintenance Systems284

7.10.1 Airbus A330/340 Central Maintenance System285

7.10.2 Boeing 777 Central Maintenance Computing System288

References290

Further Reading290

8 Sensors291

8.1 Introduction291

8.2 Air Data Sensors292

8.2.1 Air Data Parameters292

8.2.2 Pressure Sensing292

8.2.3 Temperature Sensing292

8.2.4 Use of Pressure Data294

8.2.5 Pressure Datum Settings295

8.2.6 Air Data Computers (ADCs)297

8.2.7 Airstream Direction Detectors299

8.2.8 Total Aircraft Pitot-Static System300

8.3 Magnetic Sensors301

8.3.1 Introduction301

8.3.2 Magnetic Field Components302

8.3.3 Magnetic Variation303

8.3.4 Magnetic Heading Reference System305

8.4 Inertial Sensors306

8.4.1 Introduction306

8.4.2 Position Gyroscopes306

8.4.3 Rate Gyroscopes306

8.4.4 Accelerometers308

8.4.5 Inertial Reference Set309

8.4.6 Platform Alignment312

8.4.7 Gimballed Platform315

8.4.8 Strap-Down System317

8.5 Combined Air Data and Inertial317

8.5.1 Introduction317

8.5.2 Evolution of Combined Systems317

8.5.3 Boeing 777 Example319

8.5.4 ADIRS Data-Set320

8.5.5 Further System Integration320

8.6 Radar Sensors323

8.6.1 Radar Altimeter323

8.6.2 Weather Radar324

References327

9 Communications and Navigation Aids329

9.1 Introduction329

9.1.1 Introduction and RF Spectrum329

9.1.2 Equipment331

9.1.3 Antennae332

9.2 Communications332

9.2.1 Simple Modulation Techniques332

9.2.2 HF Communications335

9.2.3 VHF Communications337

9.2.4 SATCOM339

9.2.5 Air Traffic Control (ATC) Transponder342

9.2.6 Traffic Collision Avoidance System (TCAS)345

9.3 Ground-Based Navigation Aids347

9.3.1 Introduction347

9.3.2 Non-Directional Beacon348

9.3.3 VHF Omni-Range348

9.3.4 Distance Measuring Equipment348

9.3.5 TACAN350

9.3.6 VOR/TAC350

9.4 Instrument Landing Systems350

9.4.1 Overview350

9.4.2 Instrument Landing System351

9.4.3 Microwave Landing System354

9.4.4 GNSS Based Systems354

9.5 Space-Based Navigation Systems354

9.5.1 Introduction354

9.5.2 Global Positioning System355

9.5.3 GLONASS358

9.5.4 Galileo359

9.5.5 COMPASS359

9.5.6 Differential GPS360

9.5.7 Wide Area Augmentation System (WAAS/SBAS)360

9.5.8 Local Area Augmentation System (LAAS/LBAS)360

9.6 Communications Control Systems362

References363

10 Flight Control Systems365

10.1 Principles of Flight Control365

10.1.1 Frame of Reference365

10.1.2 Typical Flight Control Surfaces366

10.2 Flight Control Elements368

10.2.1 Interrelationship of Flight Control Functions368

10.2.2 Flight Crew Interface370

10.3 Flight Control Actuation371

10.3.1 Conventional Linear Actuation372

10.3.2 Linear Actuation with Manual and Autopilot Inputs372

10.3.3 Screwjack Actuation373

10.3.4 Integrated Actuation Package374

10.3.5 FBW and Direct Electrical Link376

10.3.6 Electrohydrostatic Actuation (EHA)377

10.3.7 Electromechanical Actuation (EMA)378

10.3.8 Actuator Applications379

10.4 Principles of Fly-By-Wire379

10.4.1 Fly-By-Wire Overview379

10.4.2 Typical Operating Modes380

10.4.3 Boeing and Airbus Philosophies382

10.5 Boeing 777 Flight Control System383

10.5.1 Top Level Primary Flight Control System383

10.5.2 Actuator Control Unit Interface384

10.5.3 Pitch and Yaw Channel Overview386

10.5.4 Channel Control Logic387

10.5.5 Overall System Integration389

10.6 Airbus Flight Control Systems389

10.6.1 Airbus FBW Evolution389

10.6.2 A320 FBW System391

10.6.3 A330/340 FBW System393

10.6.4 A380 FBW System394

10.7 Autopilot Flight Director System396

10.7.1 Autopilot Principles396

10.7.2 Interrelationship with the Flight Deck398

10.7.3 Automatic Landing400

10.8 Flight Data Recorders401

10.8.1 Principles of Flight Data Recording401

10.8.2 Data Recording Environments403

10.8.3 Future Requirements403

References404

11 Navigation Systems405

11.1 Principles of Navigation405

11.1.1 Basic Navigation405

11.1.2 Navigation using Ground-Based Navigation Aids407

11.1.3 Navigation using Air Data and Inertial Navigation408

11.1.4 Navigation using Global Navigation Satellite Systems410

11.1.5 Flight Technical Error - Lateral Navigation411

11.1.6 Flight Technical Error - Vertical Navigation412

11.2 Flight Management System413

11.2.1 Principles of Flight Management Systems (FMS)413

11.2.2 FMS Crew Interface - Navigation Display414

11.2.3 FMS Crew Interface - Control and Display Unit417

11.2.4 FMS Functions420

11.2.5 FMS Procedures421

11.2.6 Standard Instrument Departure423

11.2.7 En-Route Procedures423

11.2.8 Standard Terminal Arrival Routes424

11.2.9 ILS Procedures427

11.2.10 Typical FMS Architecture427

11.3 Electronic Flight Bag427

11.3.1 EFB Functions427

11.3.2 EFB Implementation429

11.4 Air Traffic Management430

11.4.1 Aims of Air Traffic Management430

11.4.2 Communications,Navigation,Surveillance430

11.4.3 NextGen431

11.4.4 Single European Sky ATM Research (SESAR)432

11.5 Performance-Based Navigation433

11.5.1 Performance-Based Navigation Definition433

11.5.2 Area Navigation (RNAV)434

11.5.3 Required Navigation Performance (RNP)438

11.5.4 Precision Approaches440

11.6 Automatic Dependent Surveillance - Broadcast442

11.7 Boeing and Airbus Implementations442

11.7.1 Boeing Implementation442

11.7.2 Airbus Implementation444

11.8 Terrain Avoidance Warning System (TAWS)444

References447

Historical References (in Chronological Order)447

12 Flight Deck Displays449

12.1 Introduction449

12.2 First Generation Flight Deck:the Electromagnetic Era450

12.2.1 Embryonic Primary Flight Instruments450

12.2.2 The Early Pioneers451

12.2.3 The ‘Classic’ Electromechanical Flight Deck453

12.3 Second Generation Flight Deck:the Electro-Optic Era455

12.3.1 The Advanced Civil Flight Deck455

12.3.2 The Boeing 757 and 767456

12.3.3 The Airbus A320,A330 and A340457

12.3.4 The Boeing 747-400 and 777458

12.3.5 The Airbus A380460

12.3.6 The Boeing 787461

12.3.7 The Airbus A350462

12.4 Third Generation:the Next Generation Flight Deck463

12.4.1 Loss of Situational Awareness in Adverse Operational Conditions463

12.4.2 Research Areas463

12.4.3 Concepts464

12.5 Electronic Centralised Aircraft Monitor (ECAM) System465

12.5.1 ECAM Scheduling465

12.5.2 ECAM Moding465

12.5.3 ECAM Pages466

12.5.4 Qantas Flight QF32466

12.5.5 The Boeing Engine Indicating and Crew Alerting System (EICAS)468

12.6 Standby Instruments468

12.7 Head-Up Display Visual Guidance System (HVGS)469

12.7.1 Introduction to Visual Guidance Systems469

12.7.2 HVGS on Civil Transport Aircraft470

12.7.3 HVGS Installation470

12.7.4 HVGS Symbology471

12.8 Enhanced and Synthetic Vision Systems473

12.8.1 Overview473

12.8.2 EVS,EFVS and SVS Architecture Diagrams474

12.8.3 Minimum Aviation System Performance Standard (MASPS)474

12.8.4 Enhanced Vision Systems (EVS)474

12.8.5 Enhanced Flight Vision Systems (EFVS)478

12.8.6 Synthetic Vision Systems (SVS)481

12.8.7 Combined Vision Systems484

12.9 Display System Architectures486

12.9.1 Airworthiness Regulations486

12.9.2 Display Availability and Integrity486

12.9.3 Display System Functional Elements487

12.9.4 Dumb Display Architecture488

12.9.5 Semi-Smart Display Architecture490

12.9.6 Fully Smart (Integrated) Display Architecture490

12.10 Display Usability491

12.10.1 Regulatory Requirements491

12.10.2 Display Format and Symbology Guidelines492

12.10.3 Flight Deck Geometry492

12.10.4 Legibility:Resolution,Symbol Line Width and Sizing494

12.10.5 Colour494

12.10.6 Ambient Lighting Conditions496

12.11 Display Technologies498

12.11.1 Active Matrix Liquid Crystal Displays (AMLCD)499

12.11.2 Plasma Panels501

12.11.3 Organic Light-Emitting Diodes (O-LED)501

12.11.4 Electronic Paper (e-paper)502

12.11.5 Micro-Projection Display Technologies503

12.11.6 Head-Up Display Technologies504

12.11.7 Inceptors505

12.12 Flight Control Inceptors506

12.12.1 Handling Qualities507

12.12.2 Response Types507

12.12.3 Envelope Protection508

12.12.4 Inceptors508

References509

13 Military Aircraft Adaptations511

13.1 Introduction511

13.2 Avionic and Mission System Interface512

13.2.1 Navigation and Flight Management515

13.2.2 Navigation Aids516

13.2.3 Flight Deck Displays517

13.2.4 Communications518

13.2.5 Aircraft Systems518

13.3 Applications519

13.3.1 Green Aircraft Conversion519

13.3.2 Personnel,Material and Vehicle Transport521

13.3.3 Air-to-Air Refuelling521

13.3.4 Maritime Patrol522

13.3.5 Airborne Early Warning528

13.3.6 Ground Surveillance528

13.3.7 Electronic Warfare530

13.3.8 Flying Classroom530

13.3.9 Range Target/Safety530

Reference531

Further Reading531

Appendices533

Introduction to Appendices533

Appendix A:Safety Analysis - Flight Control System534

A.1 Flight Control System Architecture534

A.2 Dependency Diagram535

A.3 Fault Tree Analysis537

Appendix B:Safety Analysis - Electronic Flight Instrument System539

B.1 Electronic Flight Instrument System Architecture539

B.2 Fault Tree Analysis540

Appendix C:Safety Analysis - Electrical System543

C.1 Electrical System Architecture543

C.2 Fault Tree Analysis543

Appendix D:Safety Analysis - Engine Control System546

D.1 Factors Resulting in an In-Flight Shut Down546

D.2 Engine Control System Architecture546

D.3 Markov Analysis548

Simplified Example (all failure rates per flight hour)549

Index551

热门推荐