图书介绍

组合数学 英文版PDF|Epub|txt|kindle电子书版本网盘下载

组合数学 英文版
  • (美)Richard A.Brusldi著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:7111091582
  • 出版时间:2002
  • 标注页数:614页
  • 文件大小:19MB
  • 文件页数:633页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

组合数学 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Preface1

Chapter 1. What is Combinatorics?1

1.1 Example. Perfect covers of chessboards4

1.2 Example. Cutting a cube8

1.3 Example. Magic squares10

1.4 Example. The 4-color problem13

1.5 Example. The problem of the 36 officers14

1.6 Example. Shortest-route problem16

1.7 Example. The game of Nim18

1.8 Exercises21

2.1 Pigeonhole principle: Simple form27

Chapter 2. The Pigeonhole Principle27

2.2 Pigeonhole principle: Strong form32

2.3 A theorem of Ramsey36

2.4 Exercises41

Chapter 3. Permutations and Combinations45

3.1 Two basic counting principles45

3.2 Permutations of sets53

3.3 Combinations of Sets60

3.4 Permutations of multisets64

3.5 Combinations of multisets70

3.6 Exercises75

Chapter 4. Generating Permutations and Combinations81

4.1 Generating permutations81

4.2 Inversions in permutations87

4.3 Generating combinations93

4.5 Partial orders and equivalence relations109

4.6 Exercises116

Chapter 5. The Binomial Coefficients122

5.1 Pascal s formula122

5.2 The binomial theorem127

5.3 Identities130

5.4 Unimodality of binomial coefficients137

5.5 The multinomial theorem143

5.6 Newton s binomial theorem147

5.7 More on partially ordered sets149

5.8 Exercises152

Chapter 6. The Inclusion-Exclusion Principle and Applications159

6.1 The inclusion-exclusion principle159

6.2 Combinations with repetition168

6.3 Derangements172

6.4 Permutations with forbidden positions178

6.5 Another forbidden position problem183

6.6 Exercises185

Chapter 7. Recurrence Relations and Generating Functions190

7.1 Some number sequences191

7.2 Linear homogeneous recurrence relations202

7.3 Non-homogeneous recurrence relations213

7.4 Generating functions220

7.5 Recurrences and generating functions227

7.6 A geometry example235

7.7 Exponential generating functions240

7.8 Exercises246

Chapter 8. Special Counting Sequences252

8.1 Catalan numbers252

8.2 Difference sequences and Stirling numbrs261

8.3 Partition numbers281

8.4 A geometric problem285

8.5 Exercises290

Chapter 9. Matchings in Bipartite Graphs294

9.1 General problem formulation295

9.2 Matchings302

9.3 Systems of distinct representatives319

9.4 Stable marriages324

9.5 Exercises332

Chapter 10. Combinatorial Designs337

10.1 Modular arithmetic337

10.2 Block designs350

10.3 Steiner triple systems362

10.4 Latin squares369

10.5 Exercises393

Chapter 11. Introduction to Graph Theory400

11.1 Basic properties401

11.2 Eulerian trails412

11.3 Hamilton chains and cycles422

11.4 Bipartite multigraphs429

11.5 Trees436

11.6 The Shannon switching game443

11.7 More on trees450

11.8 Exercises463

Chapter 12. Digraphs and Networks475

12.1 Digraphs475

12.2 Networks488

12.3 Exercises496

Chapter 13. More on Graph Theory501

13.1 Chromatic number502

13.2 Plane and planar graphs514

13.3 A 5-color theorem519

13.4 Independence number and clique number523

13.5 Connectivity533

13.6 Exercises540

Chapter 14. Polya Counting546

14.1 Permutation and Symmetry groups547

14.2 Burnside s theorem559

14.3 Polya s counting formula566

14.4 Exercises586

Answers and Hints to Exercises592

Bibliography607

Index609

热门推荐